This paper presents the design of a flat Luneburg metalens antenna at V-band using Gap Waveguide (GW) technology. The metalens consists of a parallel plate waveguide loaded with metallic pins whose height is modulated to get an effective refractive index that follows the Luneburg equation. A Groove Gap Waveguide (GGW) H-plane horn is used to illuminate the metalens, such that the rays are collimated and a planar wavefront is generated in the direction of propagation. Since the structure at hand is planar, it can be efficiently integrated on flat surfaces. Moreover, the fully metallic structure is mechanically robust and presents lower losses than lenses including dielectric substrates. A prototype has been fabricated and tested, simulations and experimental results are in very good agreement. The metalens yields an input reflection coefficient (S11) below -10 dB from 45 to 70 GHz, whereas the -3dB gain fractional bandwidth is 26.2% with respect to a center frequency of 60 GHz, with a peak of 22.5 dB at 61 GHz. These features make this design an interesting solution for millimeter-wave applications.
In this paper, a flat lens antenna using Gap Waveguide (GW) technology working in the millimeter waves band was designed. The metamaterial lens is fed using a Groove Gap Waveguide (GGW) horn antenna in order to achieve a plane wavefront at broadside. Both devices, metalens and GGW antenna achieve excellent radiation results when combined together. Due to metallic composition, the structure presents more robustness, low loss, and adaptability to a flat surface, able to be used in millimeter wave application.
In this paper, a Bull's-Eye (BE) antenna with circular polarization (CP) based on ridge gap waveguide (RGW) technology is numerically and experimentally demonstrated. The structure is excited from the bottom with a standard WR-15 waveguide (V-band) coupled through a step transition to a ridge-line that ends in two orthogonal arms of different lengths to generate CP. Radiation is coupled to the top plate by a central diamond slot surrounded by the BE structure, which consists of four concentric periodic corrugations around the slot. Simulations and experimental results are in good agreement, with axial ratio below 1 dB at the operation frequency and peak gain of 18.4 dB. The antenna has righthanded CP (RHCP) with polarization discrimination of more than 30 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.