The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopyelectron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research.
Extant monoplacophorans (Tryblidiida, Mollusca) have traditionally been reported as having an internal nacreous layer, thus representing the ancestral molluscan condition. The examination of this layer in three species of Neopilinidae (Rokopella euglypta, Veleropilina zografi, and Micropilina arntzi) reveals that only V. zografi secretes an internal layer of true nacre, which occupies only part of the internal shell surface. The rest of the internal surface of V. zografi and the whole internal surfaces of the other two species examined are covered by a material consisting of lath-like, instead of brick-like, crystals, which are arranged into lamellae. In all cases examined, the crystallographic c-axis in this lamellar material is perpendicular to the surface of laths and the a-axis is parallel to their long dimension. The differences between taxa relate to the frequency of twins, which is much higher in Micropilina. In general, the material is well ordered, particularly towards the margin, where lamellae pile up at a small step size, which is most likely due to processes of crystal competition. Given its morphological resemblance to the foliated calcite of bivalves, we propose the name foliated aragonite for this previously undescribed biomaterial secreted by monoplacophorans. We conclude that the foliated aragonite probably lacks preformed interlamellar membranes and is therefore not a variant of nacre. A review of the existing literature reveals that previous reports of nacre in the group were instead of the aragonitic foliated layer and that our report of nacre in V. zografi is the first undisputed evidence of nacre in monoplacophorans. From the evolutionary viewpoint, the foliated aragonite could easily have been derived from nacre. Assuming that nacre represents the ancestral condition, as in other molluscan classes, it has been replaced by foliated aragonite along the tryblidiidan lineage, although the fossil record does not presently provide evidence as to when this replacement took place.
Oyster shells are mainly composed of layers of foliated microstructure and lenses of chalk, a highly porous, apparently poorly organized and mechanically weak material. We performed a structural and crystallographic study of both materials, paying attention to the transitions between them. The morphology and crystallography of the laths comprising both microstructures are similar. The main differences were, in general, crystallographic orientation and texture. Whereas the foliated microstructure has a moderate sheet texture, with a defined 001 maximum, the chalk has a much weaker sheet texture, with a defined 011 maximum. This is striking because of the much more disorganized aspect of the chalk. We hypothesize that part of the unanticipated order is inherited from the foliated microstructure by means of, possibly, twinning. Growth line distribution suggests that during chalk formation, the mantle separates from the previous shell several times faster than for the foliated material. A shortage of structural material causes the chalk to become highly porous and allows crystals to reorient at a high angle to the mantle surface, with which they continue to keep contact. In conclusion, both materials are structurally similar and the differences in orientation and aspect simply result from differences in growth conditions.
Free-living amoebae belonging to the species Naegleria fowleri are known to be the etiological agents for a form of fulminant meningoencephalitis that is generally fatal (primary amoebic meningoencephalitis). In a broad bacterial screening from soil and water we have isolated three strains (M-4, D-13 and A-12) belonging to the species Bacillus licheniformis that have remarkable amoebicidal activity against Naegleria sp. and also against different Gram-positive and Gram-negative bacteria. Physical-chemical characteristics, partial purification and biological activities of a substance produced by the M-4 strain have been investigated. This substance (m-4) is stable at high temperature (up to 100 degrees C) and extremes of pH (2.5-9.5) and also at -20 degrees C for months. Its production is greatly influenced by oxygenation of the cultures and is probably related to the sporulation process of the bacterium. Scanning electron microscope observations reveal that amoebae are lysed after a few minutes contact with m-4.
In biomineralization, it is essential to know the microstructural and crystallographic organization of natural hard tissues. This knowledge is virtually absent in the case of barnacles. Here, we have examined the crystal morphology and orientation of the wall plates of the giant barnacle Austromegabalanus psittacus by means of optical and electron microscopy, and electron backscatter diffraction. The wall plates are made of calcite grains, which change in morphology from irregular to rhombohedral, except for the radii and alae, where fibrous calcite is produced. Both the grains and fibres arrange into bundles made of crystallographically co-oriented units, which grow onto each other epitaxially. We call these areas crystallographically coherent regions (CCRs). Each CCR elongates and disposes its c -axis perpendicularly or at a high angle to the growth surfaces, whereas the a -axes of adjacent CCRs differ in orientation. In the absence of obvious organic matrices, this pattern of organization is interpreted to be produced by purely crystallographic processes. In particular, due to crystal competition, CCRs orient their fastest growth axes perpendicular to the growth surface. Since each CCR is an aggregate of grains, the fastest growth axis is that along which crystals stack up more rapidly, that is, the crystallographic c -axis in granular calcite. In summary, the material forming the wall plates of the studied barnacles is under very little biological control and the main role of the mantle cells is to provide the construction materials to the growth front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.