Alteromonas infernus bacterium isolated from deep-sea hydrothermal vents can produce by fermentation a high molecular weight exopolysaccharide (EPS) called GY785. This EPS described as a new source of glycosaminoglycan-like molecule presents a great potential for pharmaceutical and biotechnological applications. However, this unusual EPS is secreted by a Gram-negative bacterium and can be therefore contaminated by endotoxins, in particular the lipopolysaccharides (LPS). Biochemical and chemical analyses of the LPS extracted from A. infernus membranes have shown the lack of the typical LPS architecture since 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), glucosamine (GlcN), and phosphorylated monosaccharides were not present. Unlike for other Gram-negative bacteria, the results revealed that the outer membrane of A. infernus bacterium is most likely composed of peculiar glycolipids. Furthermore, the presence of these glycolipids was also detected in the EPS batches produced by fermentation. Different purification and chemical detoxification methods were evaluated to efficiently purify the EPS. Only the method based on a differential solubility of EPS and glycolipids in deoxycholate detergent showed the highest decrease in the endotoxin content. In contrast to the other tested methods, this new protocol can provide an effective method for obtaining endotoxin-free EPS without any important modification of its molecular weight, monosaccharide composition, and sulfate content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.