HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The conformational preferences of a series of capped peptides containing the helicogenic amino acid aminoisobutyric acid (Aib) (Z-Aib-OH, Z-(Aib)-OMe, and Z-(Aib)-OMe) are studied in the gas phase under expansion-cooled conditions. Aib oligomers are known to form 3-helical secondary structures in solution and in the solid phase. However, in the gas phase, accumulation of a macrodipole as the helix grows could inhibit helix stabilization. Implementing single-conformation IR spectroscopy in the NH stretch region, Z-Aib-OH and Z-(Aib)-OMe are both observed to have minor conformations that exhibit dihedral angles consistent with the 3-helical portion of the Ramachandran map (ϕ, ψ = -57°, -30°), even though they lack sufficient backbone length to form 10-membered rings which are a hallmark of the developed 3-helix. For Z-(Aib)-OMe three conformers are observed in the gas phase. Single-conformation infrared spectroscopy in both the NH stretch (Amide A) and C[double bond, length as m-dash]O stretch (Amide I) regions identifies the main conformer as an incipient 3-helix, having two free NH groups and two C10 H-bonded NH groups, labeled an F-F-10-10 structure, with a calculated dipole moment of 13.7 D. A second minor conformer has an infrared spectrum characteristic of an F-F-10-7 structure in which the third and fourth Aib residues have ϕ, ψ = 75°, -74° and -52°, 143°, Ramachandran angles which fall outside of the typical range for 3-helices, and a dipole moment that shrinks to 5.4 D. These results show Aib to be a 3-helix former in the gas phase at the earliest stages of oligomer growth.
Broadband microwave spectra over the 2-18 GHz range have been recorded for the resonance-stabilized 2-furanyloxy radical, formed in the first step of pyrolysis of the second-generation biofuel 2-methoxyfuran by methyl loss. Using a flash pyrolysis source attached to a pulsed valve, a 0.7% mixture of 2-methoxyfuran in argon was pyrolyzed at a series of temperatures ranging from 300 to 1600 K. Subsequent cooling in a supersonic expansion produced rotational temperatures of ∼2 K in the interrogation region. Using chirped-pulse Fourier transform microwave (CP-FTMW) methods, combined with strong-field coherence breaking (SFCB), a set of transitions due to the radical were identified and assigned. The experimental rotational constants ( A = 8897.732(93), B = 4019.946(24), C = 2770.321(84)), centrifugal distortion constants, and spin-rotation coupling constants have been determined for the radical and compared with ab initio predictions at the CCSD(T) level of theory. Compared to the 2-methoxyfuran precursor, the 2-furanyloxy radical has allylic C-C bond lengths intermediate between single and double bonds, a shortened C(5)-O(6) bond characteristic of partial double-bond character, and an O(1)-C(5)-O(6) bond angle of 121°, which resembles the O-C-O angle of an ester. Atomic spin densities extracted from the calculations confirm that the 2-furanyloxy radical is best viewed as a carbon-centered allylic lactone radical, with 80% of the spin density on the two allylic carbons and 20% on the pendant O(6) atom.
We report on rotationally resolved laser induced fluorescence (LIF) and vibrationally resolved resonance enhanced multiphoton ionization (REMPI) spectroscopy of the chiral molecule 1-indanol. Spectra of the S1 ← S0 electronic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.