Through a comprehensive analysis of the gene expression and dependency in HCC patients and cell lines, LAT1 was identified as the top amino acid transporter candidate supporting HCC tumorigenesis. To assess the suitability of LAT1 as a HCC therapeutic target, we used CRISPR/Cas9 to knockout (KO) LAT1 in the epithelial HCC cell line, Huh7. Knockout of LAT1 diminished its branched chain amino acid (BCAA) transport activity and significantly reduced cell proliferation in Huh7. Consistent with in vitro studies, LAT1 ablation led to suppression of tumor growth in a xenograft model. To elucidate the mechanism underlying the observed inhibition of cell proliferation upon LAT1 KO, we performed RNA-sequencing analysis and investigated the changes in the mTORC1 signaling pathway. LAT1 ablation resulted in a notable reduction in phosphorylation of p70S6K, a downstream target of mTORC1, as well as its substrate S6RP. This reduced cell proliferation and mTORC1 activity were rescued when LAT1 was overexpressed. These findings imply an essential role of LAT1 for maintenance of tumor cell growth and additional therapeutic angles against liver cancer.
Group A Streptococcal (GAS) biofilm formation is an important pathological feature contributing to the antibiotic tolerance and progression of various GAS infections. Although a number of bacterial factors have been described to promote in vitro GAS biofilm formation, the relevance of in vitro biofilms to host-associated biofilms requires further understanding. In this study, we demonstrate how constituents of the host environment, such as lysozyme and NaCl, can modulate GAS bacterial chain length and, in turn, shape GAS biofilm morphology and structure. Disruption of GAS chains with lysozyme results in biofilms that are more stable. Based on confocal microscopy, we attribute the increase in biofilm stability to a dense and compact three-dimensional structure produced by de-chained cells. To show that changes in biofilm stability and structure are due to the shortening of bacterial chains and not specific to the activity of lysozyme, we demonstrate that augmented chaining induced by NaCl or deletion of the autolysin gene mur1.2 produced defects in biofilm formation characterized by a loose biofilm architecture. We conclude that GAS biofilm formation can be directly influenced by host and environmental factors through the modulation of bacterial chain lengths, potentially contributing to persistence and colonization within the host. Further studies of in vitro biofilm models incorporating physiological constituents such as lysozyme may uncover new insights into the physiology of in vivo GAS biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.