In the last 20 years, new species, asexual reproduction, polyploidy and hybridization have all been reported within the genus Cobitis. An understanding of the current distribution and baseline phylogeographical history of 'true' nonhybrid Cobitis species is crucial in order to unravel these discoveries. In the present work, we investigated the phylogeography of the spined loach, Cobitis taenia, using 1126 bp of the mitochondrial cytochrome b gene from 174 individuals collected at 47 sites. In total, 51 haplotypes that differed at 49 positions (4.35%) were detected. We deduce that C. taenia survived European glaciations in at least three refugees in the Ponto-Caspian area. Two of these refugees each provided a major lineage that recolonized Europe in separate directions: one westward to England and the other spreading north into Russia before moving west. A third (minor) lineage that contributed little to the recolonization of Europe was also revealed--remaining near its Black Sea refuge. However, more recent history was difficult to resolve with colonization from a more western refugium during the last glacial maximum (LGM) a distinct possibility. Nested clade analysis indicates a pattern of restricted gene flow with isolation by distance at the first two levels and overall. Unlike many other European freshwater fish species, the Danube is not part of the current distribution of C. taenia, nor was it used as either a refuge or a source of colonization of Europe. Low genetic diversity within C. taenia suggests that its colonization of Europe is relatively recent. Demographic analyses revealed a history of recent expansion and isolation by distance.
In the loach Misgurnus anguillicaudatus, the asexual lineage, which produces unreduced clonal diploid eggs, has been identified. Among 833 specimens collected from 54 localities in Japan and two localities in China, 82 candidates of other lineage(s) of cryptic clones were screened by examining RFLP (restriction fragment length polymorphism)-PCR haplotypes in the control region of mtDNA. This analysis was performed because triploid loaches arise from the accidental incorporation of the sperm nucleus into unreduced diploid eggs of a clone. The categorization of members belonging to three newly identified lineages (clones 2-4) and the previously identified clonal lineage (clone 1) was verified by evaluating the genetic identity between two or more individuals from each clonal lineage based on RAPD (random amplified polymorphic DNA)-PCR and multilocus DNA fingerprints. We detected 75 haplotypes by observing the nucleotide status at variable sites from the control region of mtDNA. Phylogenic trees constructed from such sequences showed two highly diversified clades, A and B, that were beyond the level common for interspecific genetic differentiation. That result suggests that M. anguillicaudatus in Japan is not a single species entity. Two clone-specific mtDNA sequences were included in clade A, and the loaches with such sequences may be the maternal origin of the clones.
Summary 1.As a first approximation, whole-body metabolic rate can be considered as the sum of metabolic rates of constituent cells. Yet, among several current explanations of metabolic rate scaling, only two explicitly invoke cell architecture of organisms: (1) the Metabolic Theory of Ecology, which predicts size invariance of metabolically active cells, such as erythrocytes and (2) the cell metabolism hypothesis postulating partial dependence of metabolic scaling on the cell size (CS), which is mediated by nucleus ⁄ genome size variation.2. Here, we tested (1) and (2) by comparing standard metabolic rate (SMR), erythrocyte size (used as a proxy of CS) and nucleus size (NS) between diploid and triploid individuals of a small fish (body mass of c. 3 g) belonging to the Cobitis taenia hybrid complex. 3. We demonstrated a positive correlation of CS with genome ⁄ nucleus size and an inverse relationship between those traits and SMR. SMR scaled to body mass with a 0AE92 ± 0AE05 exponent, which significantly differed from the ¾ value, while CS scaled with body mass with an allometric exponent of 0AE05 ± 0AE007, which significantly differed from 0. Ploidy level explained c. 85% of CS variation. 4. Our results provide empirical support for CS and genome ⁄ nucleus size being important determinants of metabolic rate variation and consequently, its allometric scaling. They call attention to the significance of a long-neglected integration of cellular and organismal perspectives in studies of body size-metabolic rate relationships and their consequences for energy utilization in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.