Mechanism of testicular toxicity induced by dietary cadmium (Cd) has been less investigated than that following acute Cd injection. In the present study we characterized testicular injury in a small rodent, the bank vole, exposed subchronically to dietary Cd in a quantity of 0.9 micromol/g, and determined the importance of some factors (Cd accumulation, metallothionein (MT), oxidative stress, and zinc (Zn)) in the injury. Dietary Cd induced moderate histopathological changes (hemorrhage in interstitium, necrosis and apoptosis in seminiferous tubule epithelium) in young (1 month old) bank voles fed, for 6 weeks, Fe-adequate (1.1-1.4 micromol/g) and Fe-enriched (4.5-4.8 micromol/g) diets. In contrast, adult (5 months old) bank voles appeared to be resistant to the toxic effects of dietary Cd, despite the fact that testicular Cd contents were higher and MT levels lower than those in the young animals. The Cd-induced histopathological changes and apoptosis were accompanied by increased testicular lipid peroxidation, decreased testicular Zn concentration and elevated levels of hepatic and renal MT and Zn. Supplemental dietary Zn (1.7-1.8 micromol/g) prevented the Cd-induced testicular Zn depletion and injury. The data indicate that dietary Cd produces testicular lesions indirectly, through decreasing testicular Zn, which seems to be due to the sequestration of this element by the Cd-induced hepatic and renal MT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.