Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes still have less than optimal accuracy values, the lack of in-depth analysis for the results, and the overall accuracy that can still be improved. In this work, we experiment by evaluating and combining new deep learning models such as EfficientNet, EfficientNetV2, LCNet, MobileNetV3, TinyNet, and FBNetV3 using ensemble stacking techniques with four different meta-learners: decision trees, logistic regression, ANN, and SVM to provide better accuracy in classifying the severity of diabetic retinopathy. Our work offers satisfactory classification results on the APTOS 2019 dataset with training, validation, testing, and F1 score accuracy of 96.56%, 95.33%, 84.17%, and 70.16%, respectively.
Sarcasm is the use of words commonly used to ridicule someone or for humorous purposes. Several studies on sarcasm detection have utilized different learning algorithms. However, most of these learning models have always focused on the contents of expression only, thus leaving the contextual information in isolation. As a result, they failed to capture the contextual information in the sarcastic expression. Moreover, some datasets used in several studies have an unbalanced dataset, thus impacting the model result. In this paper, we propose a contextual model for sarcasm identification in Twitter using various pre-trained models and augmenting the dataset by applying Global Vector representation (GloVe) for the construction of word embedding and context learning to generate more sarcastic data, and also perform additional experiments by using the data duplication method. Data augmentation and duplication impact is tested in various datasets and augmentation sizes. In particular, we achieved the best performance after using the data augmentation method to increase 20% of the data labeled as sarcastic and improve the performance by 2.1% with an F1 Score of 40.44% compared to 38.34% before using data augmentation in the iSarcasm dataset.
Microorganisms such as bacteria are the main cause of various infectious diseases such as cholera, botulism, gonorrhea, Lyme disease, sore throat, tuberculosis and so on. Therefore, identification and classification of bacteria is very important in the world of medicine to help experts diagnose diseases suffered by patients. However, manual identification and classification of bacteria takes a long time and a professional individual. With the help of artificial intelligence, we can effectively and efficiently classify bacteria and save a lot of time and human labor. In this study, a system was created to classify bacteria from microscopic image samples. This system uses deep learning with the transfer learning method. Inception V3 architecture was modified and retained using 108 image samples labeled with five types of bacteria, namely Acinetobacter baumanii, Escherichia coli, Neisseria gonorrhoeae, Propionibacterium acnes and Veionella. The data is then divided into training and validation using the k-fold cross validation method. Furthermore, the features that have been extracted by the model are trained with the configuration of minibatchsize 5, maxepoch 5, initiallearnrate 0.0001, and validation frequency 3. The model is then tested with data validation by conducting ten experiments and getting an average accuracy value of 94.42%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.