Karakteristik teks yang tidak terstruktur menjadi tantangan dalam ekstraksi fitur pada bidang pemrosesan teks. Penelitian ini bertujuan untuk membandingkan kinerja dari word embedding seperti Word2Vec, GloVe dan FastText dan diklasifikasikan dengan algoritma Convolutional Neural Network. Ketiga metode ini dipilih karena dapat menangkap makna semantik, sintatik, dan urutan bahkan konteks di sekitar kata jika dibandingkan dengan feature engineering tradisional seperti Bag of Words. Proses word embedding dari metode tersebut akan dibandingkan kinerjanya pada klasifikasi berita dari dataset 20 newsgroup dan Reuters Newswire. Evaluasi kinerja diukur menggunakan F-measure. Performa terbaik menunjukkan FastText unggul dibanding dua metode word embedding lainnya dengan nilai F-Measure sebesar 0.979 untuk dataset 20 Newsgroup dan 0.715 untuk Reuters. Namun, perbedaan kinerja yang tidak begitu signifikan antar ketiga word embedding tersebut menunjukkan bahwa ketiga word embedding ini memiliki kinerja yang kompetitif. Penggunaannya sangat bergantung pada dataset yang digunakan dan permasalahan yang ingin diselesaikan.Kata kunci: word embedding, word2vec, glove, fasttext, klasfikasi teks, convolutional neural network, cnn.
The remote control system on electrical equipment in the room can be fulfilled through the internet as an IoT (Internet of Things) implementation. All devices managed from one interface, so home appliances management delivered quickly and conveniently. The main contribution in this research is IP based controlling for rooms with control lights and vertical curtains, and also the temperature of the air conditioner (AC) with IoT Technology. The used hardware is Raspberry Pi 3 as a server, Relay, motor stepper, IR led Transmitter, and temperature sensor DS18B20. For implementation, an android application is built by MIT App Inventor 2. The results show that all features function correctly, but each device responds with a different delay value. Delay time response of a lamp, vertical blind, and AC is up to 1.5 sec, 2.1 sec, and 1.6 sec, respectively.electrical appliances, IoT, controlling system, smart room
The wind carries moisture into an atmosphere and hot or cold air into a climate, affecting weather patterns. Knowing where the wind is coming from gives essential insight into what kind of temperatures are to be expected. However, the wind is affected by spatial and temporal variabilities, thus making it difficult to predict. This study focuses on finding data associations from the weather station installed at Hasanuddin University Campus based on internet of things (IoT) using Raspberry Pi as a gateway that associated all the meteorological data from sensors. The generation of association rules compares the Apriori and FP-growth algorithms to determine relations among itemsets. The results show that high humidity and warm temperature tend to associate with a westerly wind and occur at night. In contrast, conditions with less humid and moderate temperatures tend to have southerly and southeasterly wind.
Sinyal suara terkadang masih mengandung noise pada saat dilakukan proses pengolahan. Filter dilakukan untuk menyaring sinyal-sinyal suara yang tidak dibutuhkan ataupun dianggap mengganggu (noise). Penelitian ini bertujuan untuk melakukan preprocessing sinyal suara dengan membandingkan kinerja filter Infinite Impulse Respon (IIR) pada desain filter Butterworth berdasarkan frekuensi yang dilewatkan. Tujuan yang ingin dicapai dari tahap preprocessing yaitu mengolah suara agar dapat diambil karakteristik atau cirinya. Sinyal suara sampel yang akan difilter yaitu perekaman suara laki-laki pada frekuensi sampling 16000Hz. Pada penelitian ini filter Infinite Impulse Respon (IIR) digunakan dengan respon filter Butterworth. Validasi dilakukan dengan menghitung Signal Noise to Ratio (SNR) dari masing-masing jenis filter berdasarkan frekuensi yang dilewatkan. Hasil yang diperoleh berdasarkan nilai SNR tertinggi yaitu 29,9321 dB pada orde filter 6. Nilai dari SNR ini juga menunjukkan bahwa BPF lebih baik dibandingkan dengan LPF dan HPF.
Abstract-In this study, speech to text system for homophone phrases in Indonesian was designed using an extraction method which featured Mel Frequency Cepstral Coefficient (MFCC). Feature extraction results were classified by comparing the two classifiers of Backpropagation Neural Network (BPNN) and KNearest Neigbour (KNN). The input data used were the recordings of each of 3 male and female respondents. The recording process was conducted for 5 seconds at a sampling frequency of 16 kHz and at channel mono. Classification results with test data to BPNN showed accuracy rates of 96.67% and 90% respectively for male and female respondents. Moreover, the level of accuracy obtained on KNN amounted to 83.33% for males and 73.33% for females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.