2020
DOI: 10.33365/jtk.v14i2.732
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Kinerja Word Embedding Word2vec, Glove, Dan Fasttext Pada Klasifikasi Teks

Abstract: Karakteristik teks yang tidak terstruktur menjadi tantangan dalam ekstraksi fitur pada bidang pemrosesan teks. Penelitian ini bertujuan untuk membandingkan kinerja dari word embedding  seperti Word2Vec, GloVe dan FastText dan diklasifikasikan dengan algoritma Convolutional Neural Network. Ketiga metode ini dipilih karena dapat menangkap makna semantik, sintatik, dan urutan bahkan konteks di sekitar kata jika dibandingkan dengan feature engineering tradisional seperti Bag of Words. Proses word embedding dari me… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
25
2
13

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 50 publications
(40 citation statements)
references
References 0 publications
0
25
2
13
Order By: Relevance
“…The rating needs to be converted into positive and negative sentiments. The ratings of "Extraordinary" and "Excellent" were changed to positive labels (1). The ratings of "Average", "Bad", and "Very Bad" are changed to negative labels (-1).…”
Section: Data Annotationmentioning
confidence: 99%
See 1 more Smart Citation
“…The rating needs to be converted into positive and negative sentiments. The ratings of "Extraordinary" and "Excellent" were changed to positive labels (1). The ratings of "Average", "Bad", and "Very Bad" are changed to negative labels (-1).…”
Section: Data Annotationmentioning
confidence: 99%
“…All vocabulary in the corpus is multiplied by the number of sentences. In the large matrix, most of the value is zero number [1]. This weakness was solved when in 2000, Word embedding was discovered by Mikolov [2].…”
Section: Introductionmentioning
confidence: 99%
“…Fasttext is a fast and effective method for learning word representations and performing text classification [13]. Fasttext learns words by considering the subwords of the word, then each word will be represented as a set of n-gram characters which allows Fasttext to capture the meaning of shorter words and allows embedding to understand the suffixes and prefixes of words [14]. Because of Fasttext considers subwords, it will be able to capture words that rarely appear in documents and handle the problem of unrecognized words, also known as Out of Vocabulary words (OOV).…”
Section: Fasttextmentioning
confidence: 99%
“…Salah satu contoh algoritma rekomendasi yang bisa digunakan yakni Doc2Vec. Doc2vec merupakan pengembangan dari algoritma word2Vec, dimana word2vec menangkap pengertian kata dengan kata yang muncul disekelilingnya [4]. Doc2vec menambahkan konteks didalamnya [5].…”
Section: Pendahuluanunclassified