Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense fromanunidentifiedmarinesponge. Argentina , Geastrum wrightii onhumusinmixedforest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.)on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles , Lactifluus guanensis onsoil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna fromcarbonatiteinKarstcave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae onwood. Cyprus , Clavulina iris oncalcareoussubstrate. France , Chromosera ambigua and Clavulina iris var. occidentalis onsoil. French West Indies , Helminthosphaeria hispidissima ondeadwood. Guatemala , Talaromyces guatemalensis insoil. Malaysia , Neotracylla pini (incl. Tracyllales ord. nov. and Neotra- cylla gen. nov.)and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae onforestfloor. Portugal , Trichoderma aestuarinum from salinewater. Russia , Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduouswoodorsoil. South Africa , Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.)onleavesof Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis× urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme , Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.)onleaflitterof Eugenia capensis , Cyphellophora goniomatis on leaves of Gonioma kamassi , Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.)onleavesof Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa , Harzia metro sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopota- myces gen. nov.)onleavesof Phragmites australis , Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata , Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai , Neokirramyces syzygii (incl. Neokirramyces gen. nov.)onleafspotsof
Summary The biological and functional diversity of ectomycorrhizal (ECM) associations remain largely unknown in South America. In Patagonia, the ECM tree Nothofagus pumilio forms monospecific forests along mountain slopes without confounding effects of vegetation on plant–fungi interactions. To determine how fungal diversity and function are linked to elevation, we characterized fungal communities, edaphic variables, and eight extracellular enzyme activities along six elevation transects in Tierra del Fuego (Argentina and Chile). We also tested whether pairing ITS1 rDNA Illumina sequences generated taxonomic biases related to sequence length. Fungal community shifts across elevations were mediated primarily by soil pH with the most species‐rich fungal families occurring mostly within a narrow pH range. By contrast, enzyme activities were minimally influenced by elevation but correlated with soil factors, especially total soil carbon. The activity of leucine aminopeptidase was positively correlated with ECM fungal richness and abundance, and acid phosphatase was correlated with nonECM fungal abundance. Several fungal lineages were undetected when using exclusively paired or unpaired forward ITS1 sequences, and these taxonomic biases need reconsideration for future studies. Our results suggest that soil fungi in N. pumilio forests are functionally similar across elevations and that these diverse communities help to maintain nutrient mobilization across the elevation gradient.
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.