The global trend is to find new materials with improved environment friendly. The sustainable development of 2030 AGENDA and Waste Management Legislation sustain the disposal of a large quantity of slag at landfill sites by causing environmental consequences which has drawn attention to the need for its more effective recycling. Heavy industries have been operating in the Galati area for over 30 years and an ecological education is necessary for an efficient management of waste slag. The agricultural land resources are an issue world-wide and through this investigative study we showed that the mixture of blast furnace slag and waste slag dumped in landfill can help remediation of the soil acidity and increasing the crop yield. The chemical, structural and morphological properties of three investigated different slag samples are evaluated for recycling in agriculture. Results indicated that the obtained mixture of the slag waste dumped in landfill and of granulated metallurgical slag shows its usage in saving the affected lands. Therefore, by elemental analysis determined by X-ray fluorescence analytical equipment, the optimum weight ratio for the composition of soil-slag mixture were achieved. The obtained mixture presents a balance between soil pH = 5.2 corresponding to a medium acid soil and slag pH = 12.5 which corresponds as strongly basic character which is beneficial in amelioration process of acidic soils for the improving of soil characteristics.
In this work, the corrosion resistance of hybrid coatings obtained from plastic materials was evaluated and compared with the corrosion resistance of Zn coatings. Zinc and hybrid coatings were obtained by electrodeposition from zinc sulphate electrolyte. For obtained hybrid coatings it was used as disperse phase two type of plastic materials: phenol-formaldehyde resin and epoxy resin. Polarization was used to measure the corrosion rate and behaviour of zinc and hybrid coatings in 3.5% NaCl solution. Tafel curves show that the including particles of plastic materials in zinc matrix disturbs the cathodic reactions and reduces anodic reaction leading to decrease of corrosion current and increase the corrosion resistance of hybrid coatings obtained at the same electrodeposition parameters as zinc coatings. Smallest values of corrosion rate were evaluated for hybrid coatings obtained with phenol-formaldehyde resin as disperse phase that indicates a good corrosion resistance in 3.5% NaCl solution.
Background
Common reed (Phragmites australis L.) is a highly productive wetland plant and a possible valuable resource of renewable biomass worldwide. For a sustainable management the exploitation of reed is beneficial because the increasing demand for sustainable biomass which presents reed bed areas and wetlands. Knowing the properties of plant biomass obtained from reeds is essential both for the effect on combustion equipment and for the impact on the environment. Brates Lake, situated in Galati, Romania is a natural watershed with reed plantations.
Results
We used the convolutional neural network method combined with the cropped image techniques represent a powerful tool for high-precision image-based biomass detection in lake areas. The study aimed to investigate the morphological and chemical parameters through SEM–EDX analysis and pH, conductivity, nitrate anion, nitrite anion, total nitrogen, sulphate anion, sulphide anion, phosphate anion concentrations were determined from reed extract. The samples have a moderately acidic reaction pH 4.91–4.98. The number of soluble salts in the reed extract is in the range of 3.24–4.70 g/L, the values are within normal limits, providing the plant with the necessary nutrients.
Conclusions
This is the first time that neural networks are used for the detection and prediction of areas at risk for biodiversity (reduction of water gloss until it disappears, imbalances caused by keeping reeds dry in water) caused by the aggressive and uncontrolled growth of reeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.