The global trend is to find new materials with improved environment friendly. The sustainable development of 2030 AGENDA and Waste Management Legislation sustain the disposal of a large quantity of slag at landfill sites by causing environmental consequences which has drawn attention to the need for its more effective recycling. Heavy industries have been operating in the Galati area for over 30 years and an ecological education is necessary for an efficient management of waste slag. The agricultural land resources are an issue world-wide and through this investigative study we showed that the mixture of blast furnace slag and waste slag dumped in landfill can help remediation of the soil acidity and increasing the crop yield. The chemical, structural and morphological properties of three investigated different slag samples are evaluated for recycling in agriculture. Results indicated that the obtained mixture of the slag waste dumped in landfill and of granulated metallurgical slag shows its usage in saving the affected lands. Therefore, by elemental analysis determined by X-ray fluorescence analytical equipment, the optimum weight ratio for the composition of soil-slag mixture were achieved. The obtained mixture presents a balance between soil pH = 5.2 corresponding to a medium acid soil and slag pH = 12.5 which corresponds as strongly basic character which is beneficial in amelioration process of acidic soils for the improving of soil characteristics.
The world’s rapidly growing demand for raw manganese has made it increasingly important to develop methods for the economic recovery of manganese from secondary sources. The current study aims to present possible ways for the recycling and reuse of silico-manganese slag landfilled in Tulcea, City on the Danube River close to the Danube Delta Biosphere Reserve in order to save the natural resources raw of manganese. In the last three decades, the ferroalloy production plant has over 2.6 million tons of slag. Slag dumping constitutes a significant source of air, water and soil pollution, which adversely affects the environment and human health. Mn present in the slag dump is an environmental pollutant with potentially toxic effects. The results obtained with a leaching method to recover manganese from slag shows two efficient ways to valorize manganese from solid fraction (54%) with size particles between 80 and 315 µm and/or reuse the leaching medium (56% Mn) with a slag size of <80 µm. The motivation of our research is the possibility to recover manganese from slag by saving natural resources of raw of manganese and the remaining fraction can be used as aggregate sources (construction and road rehabilitation by saving extract mineral aggregates and agriculture), in order to decommission the slag dump. The proposed research is in concordance with the sustainable use of natural resources for the achievement of sustainable development of the 2030 Agenda and Waste Management Legislation due of the huge ecological costs regarding non-conforming waste dumping. If we consider the cost-benefit analysis, the environmental future is more important the human health and the benefits on the quality of the population’s health and the environment which are not non-measurable in monetary value.
One of the objectives of the circular economy is solving the world’s plastic pollution crisis and recycling of materials by ensuring less waste. The motivation of this study was to demonstrate the possibility of recycling two types of wastes with a high risk of pollution, such as plastic based polypropylene and abrasive blasting grit wastes in asphalt roads. The effects of adding together polypropylene based microplastics and grit waste in asphalt mixture for wear layer performance have been shown in this study. The morphology and elemental composition of the hot asphalt mixture samples before and after freeze–thaw cycle were examined by SEM–EDX and the performance of the modified asphalt mixture was determined with laboratory tests including Marshall stability, flow rate, solid–liquid report, apparent density, and water absorption. A hot asphalt mixture suitable for making wear layer in road construction, containing aggregates, filler, bitumen, abrasive blasting grit waste and polypropylene based microplastics is also disclosed. In the recipe of modified hot asphalt mixtures were added 3 proportions of polypropylene-based microplastics such as 0.1%, 0.3% and 0.6%. An improvement of the mixture performance is shown at the asphalt mixture sample with 0.3% of polypropylene. In addition, polypropylene-based microplastics are bond with aggregates from mixture well, so the polypropylene-modified hot asphalt mixture can effectively decrease the appearance of cracks during sudden temperature changes.
Background Common reed (Phragmites australis L.) is a highly productive wetland plant and a possible valuable resource of renewable biomass worldwide. For a sustainable management the exploitation of reed is beneficial because the increasing demand for sustainable biomass which presents reed bed areas and wetlands. Knowing the properties of plant biomass obtained from reeds is essential both for the effect on combustion equipment and for the impact on the environment. Brates Lake, situated in Galati, Romania is a natural watershed with reed plantations. Results We used the convolutional neural network method combined with the cropped image techniques represent a powerful tool for high-precision image-based biomass detection in lake areas. The study aimed to investigate the morphological and chemical parameters through SEM–EDX analysis and pH, conductivity, nitrate anion, nitrite anion, total nitrogen, sulphate anion, sulphide anion, phosphate anion concentrations were determined from reed extract. The samples have a moderately acidic reaction pH 4.91–4.98. The number of soluble salts in the reed extract is in the range of 3.24–4.70 g/L, the values are within normal limits, providing the plant with the necessary nutrients. Conclusions This is the first time that neural networks are used for the detection and prediction of areas at risk for biodiversity (reduction of water gloss until it disappears, imbalances caused by keeping reeds dry in water) caused by the aggressive and uncontrolled growth of reeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.