HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Detailed chemical kinetic modeling has been a significant part of combustion research since the entry of the computer into the research community. For most of that time, fuels have largely been provided from petrochemicals, and the combustion chemistry that was developed reflected that source of fuels. However, renewable fuels from biomass have always made important contributions as fuel sources. Current trends show that renewable fuels are gaining an even more important role as fuel sources, and chemical kinetic modeling of those fuels is playing an essential role in these advances. Interactions between fuels research and chemical kinetic modeling are discussed in this paper, with emphasis on the close and continuous coupling between them. In many cases, new fuels from biomass have structural or compositional features never before seen in real fuels, so entirely new reaction mechanisms are required.
Bio-hybrid fuels are a promising solution to accomplish a carbon-neutral and low-emission future for the transportation sector. Two potential candidates are the heterocyclic acetals 1,3-dioxane (C 4 H 8 O 2 ) and 1,3-dioxolane (C 3 H 6 O 2 ), which can be produced from the combination of biobased feedstocks, carbon dioxide, and renewable electricity. In this work, comprehensive experimental and numerical investigations of 1,3-dioxane and 1,3-dioxolane were performed to support their application in internal combustion engines. Ignition delay times and laminar flame speeds were measured to reveal the combustion chemistry on the macroscale, while speciation measurements in a jet-stirred reactor and ethylene-based counterflow diffusion flames provided insights into combustion chemistry and pollutant formation on the microscale. Comparing the experimental and numerical data using either available or proposed kinetic models revealed that the combustion chemistry and pollutant formation differ substantially between 1,3-dioxane and 1,3-dioxolane, although their molecular structures are similar. For example, 1,3-dioxane showed higher reactivity in the low-temperature regime (500−800 K), while 1,3-dioxolane addition to ethylene increased polycyclic aromatic hydrocarbons and soot formation in high-temperature (>800 K) counterflow diffusion flames. Reaction pathway analyses were performed to examine and explain the differences between these two bio-hybrid fuels, which originate from the chemical bond dissociation energies in their molecular structures.
Cyclic acetals are considered as carbon-neutral fuels that can be produced from biomass and renewable electricity. Recent investigations on 1,3-dioxolane, a five-membered cyclic acetal, revealed that unimolecular decomposition through H-atom migration within the ring governs thermal decomposition. For methyl-and ethyl-substituted dioxolane compounds, very limited information on thermodynamic, transport, bond dissociation, and thermal decomposition properties is available. The present study remedies this lack of information by providing these properties for methyl-, ethyl-, and dimethyl-substituted dioxolanes in a systematic manner. While adding substituents to the dioxolane ring has only a minor effect on the bond dissociation energies, the barrier heights for H-atom migration are clearly affected by the position of the substituents. Notably, the corresponding transition states are preferably in the boat ring configuration. However, two of the substituted dioxolanes do not allow for this configuration because of their respective bonding structures, resulting in larger barrier heights. The properties provided here will aid the detailed chemical kinetic modeling of substituted dioxolane combustion chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.