Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin.
In this study, we evaluated the efficiency of six isolates of Saccharomyces cerevisiae in controlling Colletotrichum acutatum, the causal agent of postbloom fruit drop that occur in pre-harvest citrus. We analyzed the mechanisms of action involved in biological control such as: production of antifungal compounds, nutrient competition, detection of killer activity, and production of hydrolytic enzymes of the isolates of S. cerevisiae on C. acutatum and their efficiency in controlling postbloom fruit drop on detached citrus flowers. Our results showed that all six S. cerevisiae isolates produced antifungal compounds, competed for nutrients, inhibited pathogen germination, and produced killer activity and hydrolytic enzymes when in contact with the fungus wall. The isolates were able to control the disease when detached flowers were artificially inoculated, both preventively and curatively. In this work we identified a novel potential biological control agent for C. acutatum during pre-harvest. This is the first report of yeast efficiency for the biocontrol of postbloom fruit drop, which represents an important contribution to the field of biocontrol of diseases affecting citrus populations worldwide.
RESUMO -Os frutos cítricos são afetados por diversas doenças, especialmente as fúngicas, as quais afetam a produtividade e a qualidade, principalmente quando se visa ao mercado de frutas frescas, seja para o mercado interno, seja para a exportação. Dentre as doenças fúngicas que ocorrem na fase de pós-colheita, destacase o bolor verde, causado por Penicillium digitatum. As medidas de controle baseiam-se, principalmente, no tratamento de frutos com diferentes combinações de fungicidas no packing-house. Devido às restrições quanto à presença de resíduos de fungicidas em frutos de citros e ao crescente desenvolvimento de linhagens resistentes dos patógenos a tais fungicidas, torna-se necessária a busca de alternativas de controle, como o controle biológico. Portanto, este trabalho teve por objetivos: (i) verificar o efeito antagônico de agentes de controle biológico (ACBs), sendo 06 isolados de Saccharomyces cerevisiae e 13 isolados de Bacillus subtilis contra P. digitatum; (ii) estudar as interações in vitro entre ACBs e o fitopatógeno; (iii) verificar o efeito da integração dos antagonistas com bicarbonato de sódio e cera de carnaúba no controle do bolor verde. Os resultados mostraram que a maioria dos isolados bacterianos e todos os isolados de levedura inibiram o crescimento micelial do fitopatógeno. Somente um isolado de Bacillus subtilis (ACB-84) foi capaz de inibir a germinação de P. digitatum com 72% de inibição, enquanto ACB-K1 e ACB-CR1 (S. cerevisiae) foram os mais eficientes com inibições de 78 e 85,7%, respectivamente; a adição de sacarose (a 0,5%) favoreceu ainda mais a inibição da germinação dos conídios pelos isolados da levedura. Os resultados de controle in vivo mostraram a viabilidade de S. cerevisiae ACB-K1 e ACB-CR1 para o controle de P. digitatum, em frutos de lima-ácida 'Tahiti' e laranja 'Hamlin', respectivamente; a associação de bicarbonato de sódio com agentes de biocontrole não resultou em melhorias no controle curativo do bolor verde; cera de carnaúba (18% de SST) favoreceu a atividade antagonística de S. cerevisiae, e tal efeito dependeu da variedade dos frutos cítricos em estudo e do isolado da levedura utilizado para o biocontrole. Termos para indexação: bolor verde, Citrus spp., bicarbonato de sódio, cera de carnaúba. ASSESSMENT OF ANTAGONISTIC MICRO-ORGANISMS Saccharomyces cerevisiae AND Bacillus subtilis FOR CONTROLLING Penicillium digitatumABSTRACT -Citrus fruits are affected by diverse diseases, mainly the fungal infections, which affect productivity and quality, especially when it targets the market of fresh fruit. Among the fungal diseases that occur in postharvest, there is the green mold caused by Penicillium digitatum. The control measures are based mainly in the treatment of fruits with different combinations of fungicides in packing-house. Due to restrictions on the presence of residues of fungicides in citrus fruits and the increasing development of resistant strains of pathogens to the fungicide used, it is necessary to search for control alternatives such as biological ...
Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.