Hancornia speciosa has a potential anti-diabetic effect through a mechanism dependent on inhibition of α-glucosidase and increase on glucose uptake. These results give support to the use on traditional medicine of this medicinal plant.
Flavonoids are natural plant-derived polyphenolic compounds with various biological properties particularly in the cardiovascular system, including antiatherogenic, antioxidant, vasodilation, antihypertensive, and antiplatelet activities. These biological properties have been evaluated in several experimental and clinical studies. In addition, extensive reviews have discussed the antiatherogenic effect of these polyphenols. However, limited studies have investigated the potential therapeutic vascular effects of these compounds. This review brings together some recent studies, to establish the different signaling pathways involved in the molecular mechanisms that underlie the vasodilation induced by flavonoids.
During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca 2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.
The control of blood glucose levels is critical in the treatment of diabetes mellitus. α-Glucosidase inhibitors are of great importance in reducing hyperglycemia, and plants have provided many of these agents. The present study aimed at investigating the effect of two stilbenes, lonchocarpene and 3,5-dimethoxy-4'-O-prenyl-trans-stilbene (DPS), isolated from the Amazonian plant Deguelia rufescens var. urucu, on α-glucosidase activity and on mice postprandial hyperglycemia. Lonchocarpene and DPS inhibited α-glucosidase in vitro, with pIC(50) values of 5.68 ± 0.12 and 5.73 ± 0.08, respectively. In addition, when given orally, DPS produced a significant reduction of hyperglycemia induced by an oral tolerance test, while lonchocarpene did not. Data suggest that DPS may have a potential use as an antidiabetic drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.