Hancornia speciosa has a potential anti-diabetic effect through a mechanism dependent on inhibition of α-glucosidase and increase on glucose uptake. These results give support to the use on traditional medicine of this medicinal plant.
Blood metabolic parameters of Walker-256 tumour-bearing rats, on days 5, 8, 11 and 14 after implantation of tumour, were compared with those of rats without tumour fed ad libitum (free-fed control) or with reduced feeding (pair-fed control), similar to the anorexic tumour-bearing rats. Cachexia parameters and tumour mass also were investigated. In general, especially on day 14 after implantation of tumour, there was reduction of body mass, gastrocnemius muscle mass, food intake and glycemia and increase of blood triacylglycerol, free fatty acids, lactate and urea, compared with free-fed controls rats. These changes did not occur in pair-fed control, except a slight reduction of glycemia. Pair-fed control showed no significant changes in blood cholesterol and glycerol in comparison with free-fed control, although there was reduction of cholesterol and increase of blood glycerol on day 14 after tumour implantation compared with pair-fed control. The results demonstrate that, besides the characteristic signs of the cachexia syndrome such as anorexia, weight loss and muscle catabolism, Walker-256 tumour-bearing rats show several blood metabolic alterations, some of which begin as early as day 5 after implantation of tumour, and are accentuated during the development of cachexia. Evidence that the alterations of blood metabolic parameters of tumour-bearing rats were not found in pair-fed control indicate that they were not caused by decreased food intake. These changes were probably mediated by factors produced by tumour or host tissue in response to the presence of tumour.
BackgroundIncreasing evidence suggest that the gut microbiota plays an important role in liver pathology after acute alcohol intake. The aim of our study was to investigate the roles played by commensal bacteria in alcohol-induced liver injury and in the dysbiosis caused by alcohol intake in germ-free mice, as well as the possibility of protection against alcohol-induced injuries in animals fed a high-fiber diet. For these purposes, germ-free and conventional mice were submitted to acute alcohol intake, consisting of administration of ethanol in their drinking water for 7 days, with a higher dose of alcohol administered on day 7.ResultsThere was no liver injury after alcohol consumption, and there was less neutrophil infiltration and lower pro-inflammatory cytokine levels (CXCL-1/KC and interleukin (IL)-6) in the liver in germ-free mice compared with alcohol-fed conventional mice. Additionally, conventionalization of germ-free mice with intestinal contents from alcohol-fed conventional mice induced injury and inflammation in both the liver and the intestine, suggesting that alcohol intake successively caused a perturbation of the intestinal microbiota (dysbiosis) and liver injury. Finally, previous treatment with a high-fiber diet decreased liver injury and gut permeability in alcohol-fed conventional mice.ConclusionsIn conclusion, the results of the present study provide evidence that the gut microbiota plays an important role in alcohol-induced liver injury, apparently through dysbiosis of the intestinal microbial ecosystem caused by alcohol intake. Furthermore, treatment with a high-fiber diet can counteract hepatocyte pathology and gut leakage and thus could be a promising therapeutic option.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-014-0240-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.