The present study aims to prepare polymeric membranes by electrospinning to apply in the removal of estrone (E1), 17β‐estradiol (E2), and 17α‐ethinylestradiol (EE2) in aqueous samples. Polymeric membranes of polyamide‐6 (PA6), polycaprolactone (PCL), polylactic acid (PLA), and poly (butylene adipate‐co‐terephthalate) (PBAT) were obtained, characterized, and tested as sorbent material in processes of solid membrane extraction (SME) and membrane filtration. The efficiencies of the membranes after washing and/or conditioning processes were compared. The characterizations showed membranes with nanometer‐diameter threads (between 250 and 1200 nm, on average). The four membranes' morphology, chemical composition, and thermal stability were like previous works. PBAT membranes were considered the most effective SME technique as a differential, with 44%–71% removal. For the membrane filtration process, the highest removal values were obtained for the PBAT membrane (82%–91%), which was also efficient in filtering a surface water sample from River Guaíba. PBAT polymeric membrane effectively removes and recovers the studied hormones, lowering production costs and allowing internal and external modifications. These aspects demonstrate that the obtained membranes offer an efficient material in extracting E1, E2, and EE2, of high simplicity, low cost, and green chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.