SignificanceAggregation of the antioxidant enzyme Sod1 represents common factors of both familial (fALS) and sporadic cases of ALS, a fatal neurodegenerative disease. Although many ALS studies have focused on Sod1 homodimers/homomers, the investigation of Sod1 heterodimers/heteromers remains controversial and has mostly been performed with recombinant proteins in vitro, in the absence of a cellular environment. By using living cells, this study sheds light into a critical issue in the context of fALS, the high toxicity of the WT–mutant heteromeric inclusions, especially WT–A4V heteromers which accumulate both in human cells as well as in chronologically aged yeast cells. Besides the aggregation, we proposed that an inefficient heteromer response against oxidative conditions might contribute to fALS-linked mutant hSod1 toxicity.
Aim: To describe NR3C1 exon-1F methylation and cortisol levels in newborns. Materials & methods: Preterm ≤1500 g and full-term infants were included. Samples were collected at birth and at days 5, 30 and 90 (or at discharge). Results: 46 preterm and 49 full-term infants were included. Methylation was stable over time in full-term infants (p = 0.3116) but decreased in preterm infants (p = 0.0241). Preterm infants had higher cortisol levels on the fifth day, while full-term infants showed increasing levels (p = 0.0177) over time. Conclusion: Hypermethylated sites in NR3C1 at birth and higher cortisol levels on day 5 suggest that prematurity, reflecting prenatal stress, affects the epigenome. Methylation decrease over time in preterm infants suggests that postnatal factors may modify the epigenome, but their role needs to be clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.