ResumoO objetivo deste trabalho é investigar a dinâmica inflacionária no Brasil, com ênfase no comportamento dos preços domésticos do grupo alimentação e bebidas dos índices de preços ao consumidor, e sua relação com o comportamento dos preços internacionais de commodities, das taxas de câmbio e de juros e a atividade econômica. Para isto, utiliza-se a metodologia de vetores autorregressivos, com base no período de 2003 e 2013. Os resultados apontam que os preços internacionais de commodities ICAGR e a atividade econômica PIB têm efeito positivo sobre o preço do grupo alimentação e bebidas do índice de preços ao consumidor IPCAF com um período de defasagem.Palavras-chave: Índice de preços. Commodities. Vetores autorregressivos.
ResumoA agricultura opera com instabilidade de produção principalmente devido a fatores imprevisíveis que afetam a cultura. Por esse motivo, as seguradoras têm dificuldade de quantificar o risco exato associado aos municípios produtores, principalmente no estado de Mato Grosso. Não existem estudos claros associados à segmentação e quantificação desse risco em uma escala menor. Diante desse fato, o trabalho buscou quantificar e segmentar o risco de produção de milho e soja no estado Mato-Grossense por meio de análises de agrupamento. Para o agrupamento das médias, foi adotada a metodologia não hierárquica de agrupamento denominada K-means, onde se obteve sete clusters. O risco associado à cada cluster foi estimado com base no cálculo do coeficiente de variação da média de produtividade de milho e soja entre os municípios. O trabalho apresentou variação na taxa de risco entre os clusters principalmente considerando a produtividade de milho; os municípios do cluster número 3 (Porto Alegre do Norte, Serra Nova Dourada, Santa Terezinha, Jangada, Barra do Bugres e Porto Estrela) apresentaram as maiores taxas de risco (10,2%) e podem ser desconsiderados da carteira de crédito das seguradoras; e, para a soja, as taxas de riscos entre os clusters foram similares devido à estabilidade produtiva até o momento. Nesse cenário, sugere-se que as seguradoras trabalhem com prêmios menores e introduzam programas de subvenção ao seguro rural naqueles municípios com risco individual elevado. Palavras chaves: análise de agrupamento, produtividade agrícola, seguro agrícola AbstractAgriculture operates with instability of production mainly due to unpredictable factors affecting the culture. Therefore, insurances have been difficult to quantify the exact risk associated with agricultural producing in the cities, mainly in the state of Mato Grosso. There are no clear studies associated with segmentation and quantification of this risk on a smaller scale. Therefore, the objective of this research was to quantify the risk and target production of corn and soybeans in Mato Grosso by methods of cluster analysis. For the means grouping, it was adopted the methodology of non-hierarchical clustering called K-means and seven clusters were obtained. The risk associated within each cluster was based on the coefficient of variation of the corn and soybeans yield among the cities. There was variation in the risk among clusters especially considering the corn yield. The cities Porto Alegre do Norte, Serra Nova Dourada, Santa Terezinha, Jangada, Barra do Bugres e Porto Estrela from the cluster number 3 had the highest risk rates and may be disregarded from the insurance credit portfolio. For soybeans, the risk rates among clusters were similar due to production stability so far. This scenario presented by the research suggests that insurers work with lower premiums values and introduce subsidy programs for rural insurance in those cities with high individual risk.
This article aims to present the status of solar and wind energy technologies and electric vehicles in the world and their potential expansion, quantifying the demand for copper from wind and solar energy, and electric cars and buses. Understanding how solar and wind energy and electric vehicles will impact copper demand is paramount to secure supply and enable the energy transition. Projections of solar panel and wind energy installation, and electric vehicle fleet originate from the International Energy Agency whereas the copper content in these technologies is taken from different papers. Growth in solar and wind energy technologies and electric vehicles has been consistent and robust, with solar and wind installed capacity rising annually 33.2% and 13.9%, respectively, from 2010 to 2021 and electric vehicle fleet increasing annually 86.6% in the same period. With projected continuous growth, solar photovoltaic panels and wind turbines are anticipated to need 2,661,122 and 1,309,828 tonnes of copper by 2050, respectively, based on the Announced Pledges Scenario and average intensity. By 2030, EVs are expected to be responsible for at least 1,875,490 tonnes of copper demand, considering the most pessimistic scenario in terms of adoption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.