Intimins are outer membrane proteins expressed by enteric bacterial pathogens capable of inducing intestinal attachment-and-effacement lesions. A eukaryotic cell-binding domain is located within a 280-amino-acid (Int280) carboxy terminus of intimin polypeptides. Polyclonal antiserum was raised against Int280 from enteropathogenicEscherichia coli (EPEC) serotypes O127:H6 and O114:H2 (anti-Int280-H6 and anti-Int280-H2, respectively), and Western blot analysis was used to explore the immunological relationship between the intimin polypeptides expressed by different clinical EPEC and enterohemorrhagic E. coli (EHEC) isolates, a rabbit diarrheagenic E. coli strain (RDEC-1), andCitrobacter rodentium. Anti-Int280-H6 serum reacted strongly with some EPEC serotypes, whereas anti-Int280-H2 serum reacted strongly with strains belonging to different EPEC and EHEC serotypes, RDEC-1, and C. rodentium. These observations were confirmed by using purified Int280 in an enzyme-linked immunosorbent assay and by immunogold and immunofluorescence labelling of whole bacterial cells. Some bacterial strains were recognized poorly by either antiserum (e.g., EPEC O86:H34 and EHEC O157:H7). By using PCR primers designed on the basis of the intimin-encoding eae gene sequences of serotype O127:H6, O114:H2, and O86:H34 EPEC and serotype O157:H7 EHEC, we could distinguish between different eae gene derivatives. Accordingly, the different intimin types were designated α, β, δ, and γ, respectively.
More than 20% of the world's biodiversity is located in Brazilian forests and only a few plant extracts have been evaluated for potential antibacterial activity. In the present study, 705 organic and aqueous extracts of plants obtained from different Amazon Rain Forest and Atlantic Forest plants were screened for antibacterial activity at 100 µg/ml, using a microdilution broth assay against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. One extract, VO581, was active against S. aureus (minimum inhibitory concentration (MIC) = 140 µg/ml and minimal bactericidal concentration (MBC) = 160 µg/ml, organic extract obtained from stems) and two extracts were active against E. faecalis, SM053 (MIC = 80 µg/ml and MBC = 90 µg/ml, organic extract obtained from aerial parts), and MY841 (MIC = 30 µg/ml and MBC = 50 µg/ml, organic extract obtained from stems). The most active fractions are being fractionated to identify their active substances. Higher concentrations of other extracts are currently being evaluated against the same microorganisms.
Correspondence
Propolis is a resinous substance made by bees. It possesses many biological activities, and many studies have reported its potential application in the control of dental caries. However, variability in the chemical composition of propolis is a potential problem in its quality control, especially since propolis has already been incorporated into products for oral use. Therefore, a critical analysis of the available data on propolis is warranted. The present review discusses the in vitro and in vivo studies published in the period between 1978 and 2008 regarding the effects of propolis on Streptococcus mutans growth, bacterial adherence, glucosyltransferase activity, and caries indicators. Several investigations carried out with crude propolis extracts, isolated fractions, and purified compounds showed reductions in Streptococcus mutans counts and interference with their adhesion capacity and glucosyltransferase activity, which are considered major properties in the establishment of the cariogenic process. Data from in vivo studies have demonstrated reductions in Streptococcus mutans counts in saliva, the plaque index, and insoluble polysaccharide formation. These findings indicate that propolis and/or its compounds are promising cariostatic agents. However, the variation in the chemical composition of propolis due to its geographical distribution is a significant drawback to its routine clinical use. Thus, further studies are needed to establish the quality and safety control criteria for propolis in order for it to be used in accordance with its proposed activity.
Objective: To evaluate the antibacterial action of an extract of geopropolis produced by the bee Melipona compressipes fasciculata on the concentration of Streptococcus mutans colonizing the oral cavity of young patients. Forty-one young volunteers performed 21 mouth rinses divided into three rinses per day for 7 days, with no other changes in their oral hygiene and dietary habits. Saliva was collected at three time points: before the first rinse, and one hour and 7 days after the first rinse. A reduction in the concentration of S. mutans was observed in 49% of all samples collected after use of the extract, 26% showed no alterations, and an increasing in S. mutans was observed in 25%. Was performed with the Statistica for Windows 5.9 program using the Kruskal-Wallis test for analysis of variance and the Mann-Whitney U test, with the level of significance set at 5%. The propolis extract possesses in vivo antimicrobial activity against S. mutans present in the oral cavity and might be used as an alternative measure to prevent dental caries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.