During the biodiesel production process, generally, two purification steps are performed. The first is a settling process in order to remove the main byproduct (glycerol). Nevertheless, this simple stage is insufficient to achieve purity levels required for commercial specifications. Second, a water washing is used to remove an excess of alcohol and other contaminants. Given the importance of equilibrium data for operation and optimization for liquid−liquid extraction unit operation, the study of liquid−liquid equilibrium (LLE) for methylic cottonseed biodiesel + methanol + water and ethylic cottonseed biodiesel + ethanol + water systems are studied at (293.15 and 313.15) K at atmospheric pressure. LLE data have been quantified by intermediate of two different techniques (titration and densimetric). From these experimental data, distribution coefficients and selectivity have been calculated. As expected, a good extraction capacity of water to remove alcohol has been observed. The reliability of the experimental data has been verified by the correlation proposed by Othmer−Tobias. In order to describe the LLE for the experimental systems studied, three predictive thermodynamic models were used, as follows: UNIFAC, UNIFAC-LLE, and UNIFAC-Dortmund. A root-mean-square deviation (RMSD) has been used as the statistical parameter, and it shows the follow deviations: 3.27 %, 3.62 %, and 4.00 % for the models UNIFAC, UNIFAC-Dortmund, and UNIFAC-LLE, respectively. Therefore, best representation of the LLE systems followed the order: UNIFAC > UNIFAC-Dortmund > UNIFAC-LLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.