Nanodrugs have in recent years been a subject of great debate. In 2017 alone, almost 50 nanodrugs were approved for clinical use worldwide. Despite the advantages related to nanodrugs/nanomedicine, there is still a lack of information regarding the biological safety, as the real behavior of these nanodrugs in the body. In order to better understand these aspects, in this study, we evaluated the effect of polylactic acid (PLA) nanoparticles (NPs) and magnetic core mesoporous silica nanoparticles (MMSN), of 1000 nm and 50 nm, respectively, on human cells. In this direction we evaluated the cell cycle, cytochemistry, proliferation and tubulogenesis on tumor cells lines: from melanoma (MV3), breast cancer (MCF-7, MDA-MB-213), glioma (U373MG), prostate (PC3), gastric (AGS) and colon adenocarcinoma (HT-29) and non-tumor cell lines: from human melanocyte (NGM), fibroblast (FGH) and endothelial (HUVEC), respectively. The data showed that an acute exposure to both, polymeric nanoparticles or MMSN, did not show any relevant toxic effects on neither tumor cells nor non-tumor cells, suggesting that although nanodrugs may present unrevealed aspects, under acute exposition to human cells they are harmless.
Cancer is a global epidemic disease responsible for over ten millions death worldwide. The early diagnosis and the precise treatment with reduced adverse reactions are the main goal worldwide. In this study, we produced, characterized and evaluated (in vitro) in three different cancer cell lines (protaste, breast and melanoma) a radioactive gold nanocluster (R-AuNC) (198 Au25(Capt)18). The pharmacokinetics as the influence in the ABC transporter (MRP1 Efflux Transporter Protein) was also evaluated. The results showed that R-AuNC (198 Au25(Capt)18) are capable to kill the cancer cells lines of protaste, breast and melanoma. The pharmacokinetics showed a fast clearance and great volume of distribution, confirming the use of R-AuNC as nanomedicine for cancer treatment. Finally, the ABC transporter assay corroborated that the R-AuNC (198 Au25(Capt)18) has no risk of being pumped out of cells by this efflux transporter. The results validate the use of gold nanoparticles as therapeutic nanomedicine for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.