Amine transaminases are frequently used for the production of chiral amines starting from prochiral ketones. These amines can be applied as active pharmaceutical ingredients or drug precursors. However, there are still limitations to the use of amine transaminases when it comes to bulky ketone substrates, such as biaryl ketones. Using data mining, an (R)-selective amine transaminase from Exophiala xenobiotica was identified which naturally converts biaryl ketone substrates to the corresponding amines with up to 85% conversion and excellent enantioselectivity (>99% ee). Its protein crystal structure was obtained with a resolution of 1.52 Å, which enabled us to explain this interesting substrate acceptance. Structure-guided protein engineering resulted in a quintuple variant with increased stability. Moreover, the amino acid exchange T273S increased the activity and broadened the substrate scope enabling conversions of various biaryl ketones with up to >99%. A preparative biotransformation of 1-(4-(pyridin-3-yl)phenyl)ethenone at 75 mM (15 g/L) resulted in 96% of isolated yield of the respective amine.
The first application of Deep Eutectic Solvents (DESs) in asymmetric bioamination of ketones has been accomplished. The amine transaminases (ATAs) turned out to be particularly stable in DES-buffer mixtures at a percentage of up to 75% (w/w) neoteric solvent. Moreover, this reaction medium was used to perform a chemoenzymatic cascade toward biaryl amines by coupling a Suzuki reaction sequentially with an enantioselective bioamination catalyzed by the recently discovered ATA from Exophiala xenobiotica (EX-TA). The solubilizing properties of DESs enabled the metal-catalyzed step at 200 mM loading of substrate and the subsequent biotransformation at 25 mM.
Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.