The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs. We also show that the nuclear SUMO-protease SENP1, which is found at lower levels in RA SFs, can revert the apoptosis-inhibiting effects of SUMO-1 by releasing DAXX from PML NBs. Our findings indicate that in RA SFs overexpression of SENP1 can alter the SUMO-1-mediated recruitment of DAXX to PML NBs, thus influencing the proapoptotic effects of DAXX. Accumulation of DAXX in PML NBs by SUMO-1 may, therefore, contribute to the pathogenesis of inflammatory disorders.inflammation ͉ autoimmunity ͉ DAXX ͉ SENP
The data suggest that lower expression of surface Fas, but higher levels of apoptosis-inhibiting sFas, contribute to the resistance of fibroblasts in lung fibrosis against apoptosis, to increased cellularity and also to increased formation and deposition of extracellular matrix.
Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.
Cathepsins B and L are commonly expressed cysteine proteinases that play a major role in lysosomal bulk proteolysis, protein processing, matrix degradation, and tissue remodeling. Cathepsins are also implicated in tumor progression and metastasis, tissue injury, and inflammation. Cells at sites of inflammation often show upregulation and secretion of cathepsins. The regulation of cathepsin expression by inflammatory mediators is not well understood. The aims of this study were to investigate the effect of the cytokines interleukin-1 beta (IL-1 beta), IL-6, IL-10, transforming growth factor-beta 1 (TGF-beta 1), and hepatocyte growth factor (HGF) on expression of cathepsin B and cathepsin L mRNA (quantitative RT-PCR), on protein expression (ELISA, Western blot), and also on enzymatic activity of cathepsins B and L. Investigations were performed using the human lung epithelial cell line A-549. IL-6 was found to induce a concentration-dependent increase in mRNA expression, protein concentration, and enzymatic activity of cathepsin L. Cathepsin B mRNA and protein expression were not affected by IL-6. In contrast, TGF-beta 1 decreased the amount of cathepsin L mRNA and cathepsin B mRNA. At protein level, it was shown that TGF-beta 1 clearly reduced the concentration of cathepsin L but not cathepsin B. The cytokines IL-1 beta, IL-10, and HGF were found to exert no effect on cathepsin B and L expression. In conclusion, these results are the first to show that IL-6 and TGF-beta 1 have opposite effects on the regulation of expression of cathepsins B and L in A-549 human lung epithelial cells. The proinflammatory cytokine IL-6 induced an upregulation of cathepsin L, whereas TGF-beta 1 suppressed cathepsin B and L expression. Further studies are needed to clarify the mechanism that affects cathepsin B and L expression.
Proteasome inhibition has become a target for antitumour and antiinflammatory therapy. The present study investigated the influence of cysteine proteinase and proteasome inhibitors on chemokine production in lung epithelial cells and monocytic cells.The lung carcinoma cell lines A549, SK-MES, NCI-H727, virus-transformed bronchial epithelial cell line BEAS-2B, primary lung epithelial cells, and the acute monocytic leukaemia cell lines Mono-Mac-6 and THP-1 were incubated withproteinase inhibitor (L-trans-Epoxysuccinyl-Leu-3-methylbutylamide-ethyl ester) and the influence on chemokine production (interleukin-8: IL-8, monocyte chemoattractant protein-1, RANTES) was quantified at protein and mRNA levels.Inhibition of proteasome activity by ALLN and b-lactone resulted in significantly increased IL-8 secretion (5-to 22-fold). Cysteine proteinase inhibitors did not influence chemokine production. The simultaneous rise in IL-8 mRNA was caused by an increased half-life of mRNA and increased RNA synthesis. Moreover, analysis of transcription factor activation revealed induction of activator protein-1 (c-Jun) activity by proteasome inhibition, whereas nuclear factor-kB (p50 and p65) was not activated. The significant increase in IL-8 production after proteasome inhibition was also observed in primary lung epithelial cells and in monocytic cells. In addition, the secreted IL-8 was biologically active as shown by the neutrophil chemotaxis assay.In conclusion, it was shown that proteasome inhibitors stimulate interleukin-8 secretion in lung epithelial cells and monocytic cells, thus recruiting neutrophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.