Cathepsin K is a cysteine protease with high matrix-degrading activity. Initially, cathepsin K was described as being expressed exclusively by osteoclasts. It was suggested that cathepsin K expression is a specific feature of cells involved in bone remodelling. The aim of this study was to investigate the hypothesis that cathepsin K is expressed not only in bone-resorbing macrophages, but also more generally in specifically differentiated macrophages, such as epithelioid cells and multinucleated giant cells in soft tissues. Specimens obtained from different organs and anatomical locations of patients suffering from sarcoidosis, tuberculosis, granulomas caused by foreign materials, and sarcoid-like lesions were investigated for the expression of cathepsins B, K, and L. Immunohistochemistry and in situ hybridization showed cathepsin K in epithelioid cells and multinucleated giant cells irrespective of the pathological condition and anatomical location, but not in normal resident macrophages. By immunoelectron microscopy, cathepsin K was discovered in cytoplasmic granules of multinucleated giant cells. In contrast, cathepsin B and cathepsin L were expressed ubiquitously in CD68-positive tissue macrophages, epithelioid cells, and multinucleated giant cells. The results demonstrate that cathepsin K, but not cathepsin B or cathepsin L, differentiates specific phenotypes of macrophages independently of the anatomical site. Its enzymatic characteristics, particularly its high matrix-degrading activity, suggest that cathepsin K-positive epithelioid cells and multinucleated giant cells are characterized by an enhanced specific proteolytic capability.
Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.
Lysosomal cysteine proteases are a family comprising w10 enzymes. For many years it was believed that these enzymes catalyse protein breakdown unselectively, are highly redundant in their substrate specificity and are also expressed ubiquitously.This view has changed dramatically since a number of new lysosomal cysteine proteases with restricted expression and outstanding enzymatic activity have been described. In addition, knockout mice and selective protease inhibitors have been used to characterise specific functions of single proteases.In this review, some of these functions are discussed in relation to the lungs, especially the role of lysosomal cysteine proteases in matrix remodelling, immunoregulation and surfactant protein processing.
Proteasome inhibition has become a target for antitumour and antiinflammatory therapy. The present study investigated the influence of cysteine proteinase and proteasome inhibitors on chemokine production in lung epithelial cells and monocytic cells.The lung carcinoma cell lines A549, SK-MES, NCI-H727, virus-transformed bronchial epithelial cell line BEAS-2B, primary lung epithelial cells, and the acute monocytic leukaemia cell lines Mono-Mac-6 and THP-1 were incubated withproteinase inhibitor (L-trans-Epoxysuccinyl-Leu-3-methylbutylamide-ethyl ester) and the influence on chemokine production (interleukin-8: IL-8, monocyte chemoattractant protein-1, RANTES) was quantified at protein and mRNA levels.Inhibition of proteasome activity by ALLN and b-lactone resulted in significantly increased IL-8 secretion (5-to 22-fold). Cysteine proteinase inhibitors did not influence chemokine production. The simultaneous rise in IL-8 mRNA was caused by an increased half-life of mRNA and increased RNA synthesis. Moreover, analysis of transcription factor activation revealed induction of activator protein-1 (c-Jun) activity by proteasome inhibition, whereas nuclear factor-kB (p50 and p65) was not activated. The significant increase in IL-8 production after proteasome inhibition was also observed in primary lung epithelial cells and in monocytic cells. In addition, the secreted IL-8 was biologically active as shown by the neutrophil chemotaxis assay.In conclusion, it was shown that proteasome inhibitors stimulate interleukin-8 secretion in lung epithelial cells and monocytic cells, thus recruiting neutrophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.