Tetrahydrobenzo[b]pyran derivatives were efficiently synthesized by the reaction of appropriated aromatic aldehydes, malononitrile and dimedone in the presence of SiO2-Pr-SO3H as a nanoporous and recoverable solid acid catalyst, in good to excellent yields. Single crystal x-ray analysis conclusively confirmed the structure of the 2-amino-3-cyano-7,7-dimethyl-4-(4-methylphenyl)-5-oxo-4H-5,6,7,8-tetrahydro-benzopyran.
Background
Global wheat productivity is seriously challenged by a range of rust pathogens, especially leaf rust derived from Puccinia triticina. Since the most efficient approach to control leaf rust is genetic resistance, many efforts have been made to uncover resistance genes; however, it demands an ongoing exploration for effective resistance sources because of the advent of novel virulent races. Thus, the current study was focused on detecting leaf rust resistance-related genomic loci against the P. triticina prevalent races by GWAS in a set of Iranian cultivars and landraces.
Results
Evaluation of 320 Iranian bread wheat cultivars and landraces against four prevalent rust pathotypes of P. triticina (LR-99–2, LR-98–12, LR-98–22, and LR-97–12) indicated the diversity in wheat accessions responses to P. triticina. From GWAS results, 80 leaf rust resistance QTLs were located in the surrounding known QTLs/genes on almost chromosomes, except for 1D, 3D, 4D, and 7D. Of these, six MTAs (rs20781/rs20782 associated with resistance to LR-97–12; rs49543/rs52026 for LR-98–22; rs44885/rs44886 for LR-98–22/LR-98–1/LR-99–2) were found on genomic regions where no resistance genes previously reported, suggesting new loci conferring resistance to leaf rust. The GBLUP genomic prediction model appeared better than RR-BLUP and BRR, reflecting that GBLUP is a potent model for genomic selection in wheat accessions.
Conclusions
Overall, the newly identified MTAs as well as the highly resistant accessions in the recent work provide an opportunity towards improving leaf rust resistance.
Expansins are cell wall proteins that, due to changes in pH, causing the expansion of the cell walls. In this study, a previously gene construct designed based on a root-specific gene, AtEXPA18, was utilized to assess its potential roles on different morphological, physiological, and cellular levels of generated transgenic tobacco plants in response to moderate and severe drought stress. AtEXPA18 gene was successfully transferred to the tobacco plants through an agrobacterium-mediate transformation system. Upon obtaining the second generation, tobacco transgenic plants were confirmed by conventional polymerase chain reaction (PCR) technique alongside reverse transcription PCR (RT-PCR) using specific primers. Under drought stress, the transgenic lines showed remarkable growth and significantly improved based on morphological traits such as height and stem diameter, leaf area, leaf number, root dry weight, and Abscisic acid (ABA) levels of leaves compared control plants. As a result, the Cytokinin content of transgenic plants has increased under severe stress levels. Notably, the area's expansion for abaxial epidermal cells under the microscope confirmed in transgene cells compared with the -transgene cells. These results, altogether, could support the AtEXPA18 gene implication in cell expansion and improving tolerance capacity of transgenic crops under drought stress.
A new one‐pot, four‐component reaction of phenylglyoxal or ethylglyoxalate, 1,3‐dicarbonyls, N,N‐dimethylbarbituric acid, and aromatic amines for the synthesis of highly substituted pyrroles or dihydro‐1H‐pyrrole containing barbituric acid in moderate‐to‐good yields is described. Short reaction time, mild reaction condition, use of simple experimental procedure, and prompt isolation of the products are some advantages of this protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.