A new coronavirus mathematical with hospitalization is considered with the consideration of the real cases from March 06, 2021 till the end of April 30, 2021. The essential mathematical results for the model are presented. We show the model stability when
in the absence of infection. We show that the system is stable locally asymptotically when
at infection free state. We also show that the system is globally asymptotically stable in the disease absence when
. Data have been used to fit accurately to the model and found the estimated basic reproduction number to be
. Some graphical results for the effective parameters are drawn for the disease elimination. In addition, a variable-order model is introduced, and so as to handle the outbreak effectively and efficiently, a genetic algorithm is used to produce high-quality control. Numerical simulations clearly show that decision-makers may develop helpful and practical strategies to manage future waves by implementing optimum policies.
We develop a new robust control scheme for a non-holonomic spherical robot. To this end, the mathematical model of a pendulum driven non-holonomic spherical robot is first presented. Then, a recurrent neural network-based robust nonsingular sliding mode control is proposed for stabilization and tracking control of the system. The designed recurrent neural network is applied to approximate compound disturbances, including external interferences and dynamic uncertainties. Moreover, the controller is designed in a way that avoids the singularity problem in the system. Another advantage of the proposed scheme is its ability for tracking control while there exists control input saturation, which is a serious concern in robotic systems. Based on the Lyapunov theorem, the stability of the closed-loop system has also been confirmed. Lastly, the performance of the proposed control technique for the uncertain system in the presence of an external disturbance, unknown input saturation, and dynamic uncertainties has been investigated. Also, the proposed controller has been compared with a Fuzzy-PID one. Simulation results show the effectiveness and superiority of the developed control technique.
Since December 2019, the new coronavirus has raged in China and subsequently all over the world. From the first days, researchers have tried to discover vaccines to combat the epidemic. Several vaccines are now available as a result of the contributions of those researchers. As a matter of fact, the available vaccines should be used in effective and efficient manners to put the pandemic to an end. Hence, a major problem now is how to efficiently distribute these available vaccines among various components of the population. Using mathematical modeling and reinforcement learning control approaches, the present article aims to address this issue. To this end, a deterministic Susceptible-Exposed-Infectious-Recovered-type model with additional vaccine components is proposed. The proposed mathematical model can be used to simulate the consequences of vaccination policies. Then, the suppression of the outbreak is taken to account. The main objective is to reduce the effects of Covid-19 and its domino effects which stem from its spreading and progression. Therefore, to reach optimal policies, reinforcement learning optimal control is implemented, and four different optimal strategies are extracted. Demonstrating the efficacy of the proposed methods, finally, numerical simulations are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.