We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems (with slow decay in the spectrum).
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with high-dimensional random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ 1 -minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution.In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherenceoptimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and highdimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differPreprint submitted to Unknown September 25, 2014 ential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.
This work proposes a method for sparse polynomial chaos (PC) approximation of high-dimensional stochastic functions based on non-adapted random sampling. We modify the standard ℓ 1 -minimization algorithm, originally proposed in the context of compressive sampling, using a priori information about the decay of the PC coefficients and refer to the resulting algorithm as weighted ℓ 1 -minimization. We provide conditions under which we may guarantee recovery using this weighted scheme. Numerical tests are used to compare the weighted and non-weighted methods for the recovery of solutions to two differential equations with high-dimensional random inputs: a boundary value problem with a random elliptic operator and a 2-D thermally driven cavity flow with random boundary condition.
Independent sampling of orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models, using Polynomial Chaos (PC) expansions. It is known that bounding the spectral radius of a random matrix consisting of PC samples, yields a bound on the number of samples necessary to identify coefficients in the PC expansion via solution to a least-squares regression problem. We present a related analysis which guarantees a mean square convergence using a coherence parameter of the sampled PC basis that may be both analytically bounded and computationally estimated. Utilizing asymptotic results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under each respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the PC basis. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all such sampling schemes with identical support, and which guarantees recovery with a number of samples that is, up to logarithmic factors, linear in the number of basis functions considered. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In all observed cases the coherence-optimal sampling leads to similar or considerably improved accuracy over the other considered sampling distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.