We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems (with slow decay in the spectrum).
Abstract. We introduce a near-linear complexity (geometric and meshless/algebraic) multigrid/multiresolution method for PDEs with rough (L ∞ ) coefficients with rigorous a priori accuracy and performance estimates. The method is discovered through a decision/game theory formulation of the problems of (1) identifying restriction and interpolation operators, (2) recovering a signal from incomplete measurements based on norm constraints on its image under a linear operator, and (3) gambling on the value of the solution of the PDE based on a hierarchy of nested measurements of its solution or source term. The resulting elementary gambles form a hierarchy of (deterministic) basis functions of H 1 0 (Ω) (gamblets) that (1) are orthogonal across subscales/subbands with respect to the scalar product induced by the energy norm of the PDE, (2) enable sparse compression of the solution space in H 1 0 (Ω), and (3) induce an orthogonal multiresolution operator decomposition. The operating diagram of the multigrid method is that of an inverted pyramid in which gamblets are computed locally (by virtue of their exponential decay) and hierarchically (from fine to coarse scales) and the PDE is decomposed into a hierarchy of independent linear systems with uniformly bounded condition numbers. The resulting algorithm is parallelizable both in space (via localization) and in bandwidth/subscale (subscales can be computed independently from each other). Although the method is deterministic, it has a natural Bayesian interpretation under the measure of probability emerging (as a mixed strategy) from the information game formulation, and multiresolution approximations form a martingale with respect to the filtration induced by the hierarchy of nested measurements.
We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call Optimal Uncertainty Quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information.Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop Optimal Concentration Inequalities (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the non-propagation of uncertainties or information across scales.In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems.The introduction of this paper provides both an overview of the paper and a self-contained mini-tutorial about basic concepts and issues of UQ.
We consider divergence form elliptic operators in dimension n ≥ 2 with L ∞ coefficients. Although solutions of these operators are only Hölder-continuous, we show that they are differentiable (C 1,α ) with respect to harmonic coordinates. It follows that numerical homogenization can be extended to situations where the medium has no ergodicity at small scales and is characterized by a continuum of scales. This new numerical homogenization method is based on the transfer of a new metric in addition to traditional averaged (homogenized) quantities from subgrid scales into computational scales. Error bounds can be given and this method can also be used as a compression tool for differential operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.