<p>A common defect of chip seals is chip loss or raveling. The previous studies showed uniform grading of aggregate will enhance the retention ability of the chip seal. Also, it was shown that using crumb rubber as an aggregate will enhance the chip seal behavior including aggregate retention. However, no specific study has been done focusing on the effect of aggregate size for rubber nor natural aggregate. This paper is evaluating the effect of chip size on aggregate retention of both natural and rubber aggregate. Standard and modified Vialit tests, and standard and modified Pennsylvania tests which apply different forms of mechanical energy in different temperature was used to assess the aggregate-binder bond interaction and study the chip seal retention. Test results showed different trends for the effect of size on chip retention under impact load versus dynamic load because of different modes of failure. However, rubber particles showed a superior performance rather than natural aggregate in all cases.</p>
Water film depth (WFD) is an important factor for road traffic safety because of its direct connection with skid resistance, hydroplaning speed, and the tendency of splash and spray. Increasing the pavement macrotexture reduces WFD. However, existing models for WFD prediction have not been developed on highly textured surfaces such as chip seal. Furthermore, the rainfall intensities used for developing most of these models were relatively low, leaving no or low WFD on chip seal surfaces. To propose a WFD prediction model suitable for highly textured surfaces and to consider the effect of surface material type, an experimental study was conducted with 154 different combinations of mean texture depth (MTD), surface material type, surface slope, drainage length, and rainfall intensity. The tests were carried out on chip seal specimens using a full-scale rainfall simulator. Test results from 1,784 WFD readings indicated that the Gallaway and PAVDRN models were not accurate for highly textured surfaces used in this study with MTD ranging from 0.05 to 0.20 in. Two experimental models were, therefore, proposed to predict the WFD; both models displayed a significantly higher correlation between the measured and predicted WFD compared with the existing models. Furthermore, the eco-friendly rubberized chip seal showed an enhanced drainage capability compared with conventional chip seal, especially in low slopes, because of the hydrophobic nature of crumb rubber versus the hydrophilic character of mineral aggregates. Accordingly, the proposed model incorporated a term to consider the effect of surface material type.
The characteristics of the load applied by traffic, namely, vehicle speed and load magnitude, play a critical role in the raveling performance of chip seal pavement, which is often overlooked in literature. Furthermore, a sustainable chip seal constructed out of tire derived aggregate (TDA) has been recently introduced. Unlike mineral aggregate, rubber is a time-dependent material, and its properties are greatly influenced by the magnitude and rate of loading. Introducing TDA in chip seal has increased the significance and need to investigate the effects of vehicle speed and load on chip seal. This study investigated the raveling performance of different chip seal specimens constructed out of mineral and TDA, as well as a hybrid tire derived–mineral aggregate, under various loading speeds and magnitudes using a small-wheel traffic simulation device. The findings revealed that both load and speed significantly affect the texture loss of conventional and TDA chip seals, but in opposite ways. Conventional chip seals experienced increased texture loss with higher load and speed, while TDA chip seals showed a decrease. The use of TDA as an aggregate in chip seal resulted in a 23% reduction in macrotexture loss under increased load and a 56% reduction in macrotexture loss under increased speed compared with conventional chip seal. This improved performance is attributed to the dynamic properties of TDA, such as internal hysteresis, time-dependent behavior, and load transmissibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.