A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.
Grassland contributes to carbon storage and animal feed production. Its yield is largely determined by the cutting times of grassland. Previous studies have used remote sensing data for grassland biomass estimation, but only a few studies have focused on SAR remote sensing approaches for automatic grassland cutting status detection. Due to the occurrence of multiple cuttings in a year, it is crucial to effectively monitor grassland cutting events in order to achieve accurate biomass estimations of a whole season. In this study, we examined the capabilities of multilayer perceptron neural networks for automatic grassland cutting status detection using SAR imagery. The proposed model inputs are a time series dataset of VV and VH Sentinel-1 C-band SAR and second-order texture metrics (homogeneity, entropy, contrast and dissimilarity). The proposed approach has been successfully tested on a dataset collected from several fields in Germany in 2016, with an overall accuracy of 85.71% for the validation set.
Accurate knowledge of the spatial extents and distributions of an oil spill is very impor-tant for efficient response. This is because most petroleum products spread rapidly on the water surface when released into the ocean, with the majority of the affected area becoming covered by very thin sheets. This article presents a study for examining the feasibility of Landsat ETM+ images in order to detect oil spills pollutions. The Landsat ETM+ images for 1 st , 10 th , 17 th May 2010 were used to study the oil spill in Gulf of Mexico. In this article, an attempt has been made to perform ratio operations to enhance the feature. The study concluded that the bands difference between 660 and 560 nm, division at 660 and 560 and division at 825 and 560 nm, normalized by 480 nm provide the best result. Multilayer perceptron neural network classifier is used in order to perform a pixel-based supervised classification. The result indicates the potential of Landsat ETM+ data in oil spill detection. The promising results achieved encourage a further analysis of the potential of the optical oil spill detection approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.