In this paper, we introduce the definitions of shadowing and average shadowing properties for iterated function systems and give some examples characterizing these definitions. We prove that an iterated function system has the shadowing property if and only if the step skew product corresponding to the iterated function system has the shadowing property. Also, we study some notions such as transitivity, chain transitivity, chain mixing and mixing for iterated function systems.
In this paper we show that an -stable diffeomorphism has the weak inverse shadowing property with respect to classes of continuous method and and some of the -stable diffeomorphisms have weak inverse shadowing property with respect to classes . In addition we study relation between minimality and weak inverse shadowing property with respect to class and relation between expansivity and inverse shadowing property with respect to class
This paper is devoted to study some chaotic properties of iterated function systems (IFSs). Specially, a new notion named thick chaotic IFSs is introduced. The relationship between thick chaos and another properties of some notions in dynamical systems are studied.
In this paper, we prove that every non-uniformly expanding transitive group (or semigroup) action of C1+α conformal local diffeomorphisms of a compact manifold is ergodic with respect to the Lebesgue measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.