The thermal stability of proteins in the presence of organic solvents and the search for ways to increase this stability are important topics in industrial biocatalysis and protein engineering. The denaturation of hen egg-white lysozyme in mixtures of water with dimethyl sulfoxide (DMSO) with a broad range of compositions was studied using a combination of differential scanning calorimetry (DSC), circular dichroism (CD), and spectrofluorimetry techniques. In this study, for the first time, the kinetics of unfolding of lysozyme in DMSO–water mixtures was characterized. In the presence of DMSO, a sharp decrease in near-UV CD and an increase in the fluorescence signal were observed at lower temperatures than the DSC denaturation peak. It was found that differences in the temperatures of the CD and DSC signal changes increase as the content of DMSO increases. Changes in CD and fluorescence are triggered by a break of the tertiary contacts, leading to an intermediate state, while the DSC peak corresponds to a subsequent complete loss of the native structure. In this way, the commonly used two-state model was proven to be unsuitable to describe the unfolding of lysozyme in the presence of DMSO. In kinetic studies, it was found that even high concentrations of DMSO do not drastically change the activation energy of the initial stage of unfolding associated with a disruption of the tertiary structure, while the enthalpy of denaturation shows a significant dependence on DMSO content. This observation suggests that the structure of the transition state upon unfolding remains similar to the structure of the native state.
The folding of lysozyme in glycerol was monitored by the fast scanning calorimetry technique. Application of a temperature–time profile with an isothermal segment for refolding allowed assessment of the state of the non-equilibrium protein ensemble and gave information on the kinetics of folding. We found that the non-equilibrium protein ensemble mainly contains a mixture of unfolded and folded protein forms and partially folded intermediates, and enthalpic barriers control the kinetics of the process. Lysozyme folding in glycerol follows the same or similar triangular mechanism described in the literature for folding in water. The unfolding enthalpy of the intermediate must be no lower than 70% of the folded form, while the activation barrier for the unfolding of the intermediate (ca. 140 kJ/mol) is about 100 kJ/mol lower than that of the folded form (ca. 240–260 kJ/mol).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.