Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.
The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host's immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease--such as experimental autoimmune encephalomyelitis.
Trichinella spiralis is a helminth that provokes Th2 and anti-inflammatory type responses in an infected host. Our previous studies using Dark Agouti (DA) rats indicated that T. spiralis infection reduced experimental autoimmune encephalomyelitis (EAE) severity in rats. The aim of this study was to analyse the mechanisms underlying EAE suppression driven by T. spiralis infection. Reduced clinical and histological manifestations of the disease were accompanied by increased IL-4 and IL-10 production and decreased IFN-gamma and IL-17 production in draining lymph node cells. This indicates that T. spiralis infection successfully maintains a Th2 cytokine bias regardless of EAE induction. High IL-10 signifies parasite-induced anti-inflammatory and/or regulatory cell responses. Transfer of splenic T cell-enriched population of cells from T. spiralis-infected rats into EAE immunized rats caused amelioration of EAE and in some cases protection from disease development. This population of cells contained higher proportion of CD4(+) CD25(+) Foxp3(+) regulatory cells and produced high level of IL-10 when compared with uninfected rats.
Trichinella spiralis has the unique ability to make itself “at home” by creating and hiding in a new type of cell in the host body that is the nurse cell. From this immunologically privileged place, the parasite orchestrates a long-lasting molecular cross talk with the host through muscle larvae excretory-secretory products (ES L1). Those products can successfully modulate parasite-specific immune responses as well as responses to unrelated antigens (either self or nonself in origin), providing an anti-inflammatory milieu and maintaining homeostasis. It is clear, based on the findings from animal model studies, that T. spiralis and its products induce an immunomodulatory network (which encompasses Th2- and Treg-type responses) that may allow the host to deal with various hyperimmune-associated disorders as well as tumor growth, although the latter still remains unclear. This review focuses on studies of the molecules released by T. spiralis, their interaction with pattern recognition receptors on antigen presenting cells, and subsequently provoked responses. This paper also addresses the immunomodulatory properties of ES L1 molecules and how the induced immunomodulation influences the course of different experimental inflammatory and malignant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.