Breast Cancer has become the common cause of death among women. Due to long hours invested in manual diagnosis and lesser diagnostic system available emphasize the development of automated diagnosis for early diagnosis of the disease. Our aim is to classify whether the breast cancer is benign or malignant and predict the recurrence and non-recurrence of malignant cases after a certain period. To achieve this we have used machine learning techniques such as Support Vector Machine, Logistic Regression, KNN and Naive Bayes. These techniques are coded in MATLAB using UCI machine learning depository. We have compared the accuracies of different techniques and observed the results. We found SVM most suited for predictive analysis and KNN performed best for our overall methodology.
OpenStreetMap (OSM) is one of the richest openly available sources of volunteered geographic information. Although OSM includes various geographical entities, their descriptions are highly heterogeneous, incomplete, and do not follow any well-defined ontology. Knowledge graphs can potentially provide valuable semantic information to enrich OSM entities. However, interlinking OSM entities with knowledge graphs is inherently difficult due to the large, heterogeneous, ambiguous and flat OSM schema and the annotation sparsity. This paper tackles the alignment of OSM tags with the corresponding knowledge graph classes holistically by jointly considering the schema and instance layers. We propose a novel neural architecture that capitalizes upon a shared latent space for tag-to-class alignment created using linked entities in OSM and knowledge graphs. Our experiments performed to align OSM datasets for several countries with two of the most prominent openly available knowledge graphs, namely, Wikidata and DBpedia, demonstrate that the proposed approach outperforms the state-of-the-art schema alignment baselines by up to 53 percentage points in terms of F1-score. The resulting alignment facilitates new semantic annotations for over 10 million OSM entities worldwide, which is more than a 400% increase compared to the existing semantic annotations in OSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.