Breast Cancer has become the common cause of death among women. Due to long hours invested in manual diagnosis and lesser diagnostic system available emphasize the development of automated diagnosis for early diagnosis of the disease. Our aim is to classify whether the breast cancer is benign or malignant and predict the recurrence and non-recurrence of malignant cases after a certain period. To achieve this we have used machine learning techniques such as Support Vector Machine, Logistic Regression, KNN and Naive Bayes. These techniques are coded in MATLAB using UCI machine learning depository. We have compared the accuracies of different techniques and observed the results. We found SVM most suited for predictive analysis and KNN performed best for our overall methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.