Introduction The Alzheimer’s Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer’s disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. Methods Fasting serum samples from the Alzheimer’s Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. Results Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1–42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. Discussion Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.
Introduction: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and specific role for the gut-brain axis in neurodegeneration. Bile acids (BA), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer disease (AD). Methods: Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1,464 subjects including 370 cognitively normal older adults (CN), 284 with early mild cognitive impairment (MCI), 505 with late MCI, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for cofounders and multiple testing. Results: In AD compared to CN, we observed significantly lower serum concentrations of a primary BA (cholic acid CA) and increased levels of the bacterially produced, secondary BA, deoxycholic acid (DCA), and its glycine and taurine conjugated forms. An increased ratio of DCA:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response related genes implicated in AD showed associations with BA profiles. Conclusion: We report for the first time an association between altered BA profile, genetic variants implicated in AD and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut liver brain axis in the pathogenesis of AD.
Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 ؊1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 ؊1639G>A among Asians (n ؍ 1103), blacks (n ؍ 670), and whites (n ؍ 3113).Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multivariable linear regression. VKORC1 ؊1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction.VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the ؊1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups. (Blood. 2010;115(18):3827-3834) IntroductionWarfarin, the most commonly prescribed anticoagulant, exhibits large interpatient variability in dose requirements. Patient-specific factors (eg, age, body size, race, concurrent diseases, and medications) explain some of the variability in warfarin dose, but genetic factors influencing warfarin response explain a significantly higher proportion of the variability in dose. 1 Candidate-gene association studies 2-22 have identified 2 genes responsible for the main proportion of the genetic effect: CYP2C9, which codes for the enzyme cytochrome P450 2C9 that metabolizes S-warfarin, 23,24 and VKORC1, which codes for warfarin's target, vitamin K epoxide reductase. 25,26 The influence of CYP2C9 and VKORC1 has also been confirmed by genome-wide association studies among whites. 27,28 These studies suggest that identification of common variants in other genes exhibiting influence of magnitude similar to that of CYP2C9 and VKORC1 is unlikely in whites. The most influential CYP2C9 polymorphisms are nonsynonymous coding variants resulting in reduced enzyme activity and decreased metabolic capacity. [29][30][31] In contrast, common VKORC1 variants associated with warfarin dose are noncoding polymorphisms, the effects of which are thought to be mediated through differential expression of the VKOR protein. 32 These polymorphisms are within a region of strong linkage disequilibrium (LD) among patients of European ancestry; thus, they may all point to the same common causal polymorphism. 10,14 However, neither the causative VKORC1 polymorphism nor the molecula...
BackgroundHypertrophic cardiomyopathy is the most prevalent heart disorder in cats and principal cause of cardiovascular morbidity and mortality. Yet, the impact of preclinical disease is unresolved.Hypothesis/ObjectivesObservational study to characterize cardiovascular morbidity and survival in cats with preclinical nonobstructive (HCM) and obstructive (HOCM) hypertrophic cardiomyopathy and in apparently healthy cats (AH).AnimalsOne thousand seven hundred and thirty client‐owned cats (430 preclinical HCM; 578 preclinical HOCM; 722 AH).MethodsRetrospective multicenter, longitudinal, cohort study. Cats from 21 countries were followed through medical record review and owner or referring veterinarian interviews. Data were analyzed to compare long‐term outcomes, incidence, and risk for congestive heart failure (CHF), arterial thromboembolism (ATE), and cardiovascular death.ResultsDuring the study period, CHF, ATE, or both occurred in 30.5% and cardiovascular death in 27.9% of 1008 HCM/HOCM cats. Risk assessed at 1, 5, and 10 years after study entry was 7.0%/3.5%, 19.9%/9.7%, and 23.9%/11.3% for CHF/ATE, and 6.7%, 22.8%, and 28.3% for cardiovascular death, respectively. There were no statistically significant differences between HOCM compared with HCM for cardiovascular morbidity or mortality, time from diagnosis to development of morbidity, or cardiovascular survival. Cats that developed cardiovascular morbidity had short survival (mean ± standard deviation, 1.3 ± 1.7 years). Overall, prolonged longevity was recorded in a minority of preclinical HCM/HOCM cats with 10% reaching 9‐15 years.Conclusions and Clinical ImportancePreclinical HCM/HOCM is a global health problem of cats that carries substantial risk for CHF, ATE, and cardiovascular death. This finding underscores the need to identify therapies and monitoring strategies that decrease morbidity and mortality.
Disease-specific metabolomic profiles in food allergy and asthma Food Allergy n= 70 Asthma alone n=35 history of anaphylaxis n=19 mulƟple food allergies n=49 • FaƩy acids • Altered primary bile acids • Aminoacids (threonine, valine, glutamate)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.