De novo mutations (DNMs) in protein-coding genes are a well-established cause of developmental disorders (DD). However, known DD-associated genes only account for a minority of the observed excess of such DNMs. To identify novel DD-associated genes, we integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We identified 285 significantly DD-associated genes, including 28 not previously robustly associated with DDs. Despite detecting more DD-associated genes than in any previous study, much of the excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that over 1,000 novel DD-associated genes await discovery, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of dominant DDs.
Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-
KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2–47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype–genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.