Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.
Animals collecting resources that are fixed in space but replenish over time, such as floral nectar and pollen, often establish small foraging areas to which they return faithfully. Some repeatedly visit a set of patches in a significantly predictable sequence (socalled ''trapline foraging''), which may allow them to focus on more profitable patches in their foraging areas. The functional significance of trapline foraging itself, however, has not been empirically demonstrated, especially in competitive situations. We conducted laboratory experiments with artificial flowers to test whether and how accumulated foraging experience in bumble bees affects their movement patterns and foraging performance in the presence of competition. Experienced bees with prior access to flowers achieved higher rates of nectar intake than did later arrivals because they traveled faster between flowers and returned to flowers at more regular intervals. These behavioral skills improved foraging performance in competitive situations in 2 ways: nectar that accumulated in flowers could be harvested before its replenishment rate slowed down, and nectar could be taken before the arrival of a competitor. In each foraging trip, however, bees traveled more slowly as they followed more repeatable routes. Despite this trade-off between speed and accuracy in traplining, bees constantly upgraded both skills as they gained experience from trip to trip. This upgrading still occurred in the absence of a competitor. Foraging area fidelity thus allowed bumble bees to establish long-term spatial memory required for fast movements and accurate traplining and, in turn, increased their foraging performance in competition with less experienced individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.