The glycaemic index (GI) concept was originally introduced to classify different sources of carbohydrate (CHO)-rich foods, usually having an energy content of . 80 % from CHO, to their effect on post-meal glycaemia. It was assumed to apply to foods that primarily deliver available CHO, causing hyperglycaemia. Low-GI foods were classified as being digested and absorbed slowly and high-GI foods as being rapidly digested and absorbed, resulting in different glycaemic responses. Low-GI foods were found to induce benefits on certain risk factors for CVD and diabetes. Accordingly it has been proposed that GI classification of foods and drinks could be useful to help consumers make 'healthy food choices' within specific food groups. Classification of foods according to their impact on blood glucose responses requires a standardised way of measuring such responses. The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve. All together, these technical recommendations will help to implement or reinforce measurement of GI in laboratories and help to ensure quality of results. Since there is current international interest in alternative ways of expressing glycaemic responses to foods, some of these methods are discussed.
Abstract. When studying convergence of measures, an important issue is the choice of probability metric. We provide a summary and some new results concerning bounds among some important probability metrics/distances that are used by statisticians and probabilists. Knowledge of other metrics can provide a means of deriving bounds for another one in an applied problem. Considering other metrics can also provide alternate insights. We also give examples that show that rates of convergence can strongly depend on the metric chosen. Careful consideration is necessary when choosing a metric.Abrégé. Le choix de métrique de probabilité est une décision très importante lorsqu'onétudie la convergence des mesures. Nous vous fournissons avec un sommaire de plusieurs métriques/distances de probabilité couramment utilisées par des statisticiens(nes) at par des probabilistes, ainsi que certains nouveaux résultats qui se rapportentà leurs bornes. Avoir connaissance d'autres métriques peut vous fournir avec un moyen de dériver des bornes pour une autre métrique dans un problème appliqué. Le fait de prendre en considération plusieurs métriques vous permettra d'approcher des problèmes d'une manière différente. Ainsi, nous vous démontrons que les taux de convergence peuvent dépendre de façon importante sur votre choix de métrique. Il est donc important de tout considérer lorsqu'on doit choisir une métrique.
In subjects with T2DM managed by diet alone with optimal glycemic control, long-term HbA1c was not affected by altering the GI or the amount of dietary carbohydrate. Differences in total:HDL cholesterol among diets had disappeared by 6 mo. However, because of sustained reductions in postprandial glucose and CRP, a low-GI diet may be preferred for the dietary management of T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.