Abstract. When studying convergence of measures, an important issue is the choice of probability metric. We provide a summary and some new results concerning bounds among some important probability metrics/distances that are used by statisticians and probabilists. Knowledge of other metrics can provide a means of deriving bounds for another one in an applied problem. Considering other metrics can also provide alternate insights. We also give examples that show that rates of convergence can strongly depend on the metric chosen. Careful consideration is necessary when choosing a metric.Abrégé. Le choix de métrique de probabilité est une décision très importante lorsqu'onétudie la convergence des mesures. Nous vous fournissons avec un sommaire de plusieurs métriques/distances de probabilité couramment utilisées par des statisticiens(nes) at par des probabilistes, ainsi que certains nouveaux résultats qui se rapportentà leurs bornes. Avoir connaissance d'autres métriques peut vous fournir avec un moyen de dériver des bornes pour une autre métrique dans un problème appliqué. Le fait de prendre en considération plusieurs métriques vous permettra d'approcher des problèmes d'une manière différente. Ainsi, nous vous démontrons que les taux de convergence peuvent dépendre de façon importante sur votre choix de métrique. Il est donc important de tout considérer lorsqu'on doit choisir une métrique.
Abstract. When studying convergence of measures, an important issue is the choice of probability metric. We provide a summary and some new results concerning bounds among some important probability metrics/distances that are used by statisticians and probabilists. Knowledge of other metrics can provide a means of deriving bounds for another one in an applied problem. Considering other metrics can also provide alternate insights. We also give examples that show that rates of convergence can strongly depend on the metric chosen. Careful consideration is necessary when choosing a metric.Abrégé. Le choix de métrique de probabilité est une décision très importante lorsqu'onétudie la convergence des mesures. Nous vous fournissons avec un sommaire de plusieurs métriques/distances de probabilité couramment utilisées par des statisticiens(nes) at par des probabilistes, ainsi que certains nouveaux résultats qui se rapportentà leurs bornes. Avoir connaissance d'autres métriques peut vous fournir avec un moyen de dériver des bornes pour une autre métrique dans un problème appliqué. Le fait de prendre en considération plusieurs métriques vous permettra d'approcher des problèmes d'une manière différente. Ainsi, nous vous démontrons que les taux de convergence peuvent dépendre de façon importante sur votre choix de métrique. Il est donc important de tout considérer lorsqu'on doit choisir une métrique.
Every weighted tree corresponds naturally to a cooperative game that we call a tree game; it assigns to each subset of leaves the sum of the weights of the minimal subtree spanned by those leaves. In the context of phylogenetic trees, the leaves are species and this assignment captures the diversity present in the coalition of species considered. We consider the Shapley value of tree games and suggest a biological interpretation. We determine the linear transformation M that shows the dependence of the Shapley value on the edge weights of the tree, and we also compute a null space basis of M. Both depend on the split counts of the tree. Finally, we characterize the Shapley value on tree games by four axioms, a counterpart to Shapley's original theorem on the larger class of cooperative games. We also include a brief discussion of the core of tree games.
In this paper we show how theorems of Borsuk-Ulam and Tucker can be used to construct a consensus-halving: a division of an object into two portions so that each of n people believes the portions are equal. Moreover, the division takes at most n cuts, which is best possible. This extends prior work using methods from combinatorial topology to solve fair division problems. Several applications of consensus-halving are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.