This paper investigates the uncertainty in the impact of climate change on flood frequency in England, through the use of continuous simulation of river flows. Six different sources of uncertainty are discussed: future greenhouse gas emissions; Global Climate Model (GCM) structure; downscaling from GCMs (including Regional Climate Model structure); hydrological model structure; hydrological model parameters and the internal variability of the climate system (sampled by applying different GCM initial conditions). These sources of uncertainty are demonstrated (separately) for two example catchments in England, by propagation through to flood frequency impact. The results suggest that uncertainty from GCM structure is by far the largest source of uncertainty. However, this is due to the extremely large increases in winter rainfall predicted by one of the five GCMs used. Other sources of uncertainty become more significant if the results from this GCM are omitted, although uncertainty from sources relating to modelling of the future climate is generally still larger than that relating to emissions or hydrological modelling. It is also shown that understanding current and future natural variability is critical in assessing the importance of climate change impacts on hydrology.
Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. precipitation set a record (Fig. 3a). Sustained high precipitation amounts 60 during the whole winter led to this record, rather than a few very wet days, Human influence on climate in the 2014 Southern 61and none of the 5-day precipitation averages over the three winter months 62 was a record (Fig. 3b). Similarly, while Thames' daily peak river flows were 63 not exceptional, the 30-day peak flow was the second highest since 64 measurements began in 1883 ( Supplementary Fig. 10 to provide a conservative estimate of uncertainty. 106We consider January precipitation and SLP, with Southern England 107Precipitation (SEP) averaged over land grid points in 50º-52ºN, 6.5ºW-2ºE. 189In the large RCM ensemble, the best estimate for the overall change in risk of is an increase of 43%, with a range from no change to 164% increase 192 associated with uncertainty in the pattern of anthropogenic warming (Fig. 5d). rainfall that we simulate is less on timescales that dominate flooding in this 252 catchment, consistent with the mechanism being an increase in the frequency 253 of the zonal regime, and so, successions of strong but fast-moving storms. 254Outputs from CLASSIC are combined with information about the location of
This paper presents a novel framework for undertaking robust climate change impact studies, which can be used for testing the robustness of precautionary climate change allowances used in engineering design. It is illustrated with respect to fluvial flood risk in the UK. The methodology departs from conventional scenario-led impact studies because it is based on sensitivity analyses of catchment responses to a plausible range of climate changes (rather than the time-varying outcome of individual scenarios), making it scenarioneutral. The method involves separating the climate change projections (the hazard) from the catchment responsiveness (the vulnerability) expressed as changes in peak flows. By combining current understanding of likelihood of the climate change hazard with knowledge of the sensitivity of a given catchment, it is possible to evaluate the fraction of climate model projections that would not be accommodated by specified safety margins. This enables rapid appraisal of existing or new precautionary allowances for a set of climate change projections, but also for any new set of climate change projections for example arising from a new generation of climate models as soon as they are available, or when focusing on a different planning time horizon, without the need for undertaking a new climate change impact analysis with the new scenarios. The approach is demonstrated via an assessment of the UK Government's 20% allowance for climate change applied in two contrasting catchments. In these exemplars, the allowance defends against the majority of sampled climate projections for the 2080s from the IPCC-AR4 GCM and UKCP09 RCM runs but it is still possible to identify a subset of regional scenarios that would exceed the 20% threshold.
[1] This paper discusses the notion of similarity often used in the regionalization studies of hydrological models. We compare two different visions of similarity: the apparent similarity defined on the basis of observable catchment properties, and behavioral similarity judged through the use of hydrological models. These two visions are generally assumed to be merged in regionalization studies: Catchments having apparently similar physical characteristics are assumed to have a similar hydrological behavior. In this paper, we wished to test the validity of this assumption. To this aim, we defined behavioral (hydrological) similarity on the basis of model parameter transferability. Then pools of hydrologically similar catchments are compared with pools of apparently physically similar catchments, as identified on the basis of physiographic catchment descriptors. The overlap between the two pools of similar catchments is analyzed, making it possible to judge the efficiency of the physical similarity measure and to identify hydrologically similar catchments in an ungauged context. The results show that the overlap between the two pools is significant for only 60% of the catchments. For the other catchments, two major reasons were identified as contributing to the lack of overlap: (1) these catchments often have a quite specific hydrological behavior and (2) the role of the underground properties of the catchment on its hydrological behavior was not found to be accurately described by the available physical descriptors, meaning that more relevant catchment descriptors should be sought to better describe the geological and lithological context in hydrological terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.