It is widely accepted that air pollution can exacerbate asthma in those who already have the condition. What is less clear is whether air pollution can contribute to the initiation of new cases of asthma. Mechanistic evidence from toxicological studies, together with recent information on genes that predispose towards the development of asthma, suggests that this is biologically plausible, particularly in the light of the current understanding of asthma as a complex disease with a variety of phenotypes. The epidemiological evidence for associations between ambient levels of air pollutants and asthma prevalence at a whole community level is unconvincing; meta-analysis confirms a lack of association. In contrast, a meta-analysis of cohort studies found an association between asthma incidence and within-community variations in air pollution (largely traffic dominated). Similarly, a systematic review suggests an association of asthma prevalence with exposure to traffic, although only in those living very close to heavily trafficked roads carrying a lot of trucks. Based on this evidence, the UK's Committee on the Medical Effects of Air Pollutants recently concluded that, overall, the evidence is consistent with the possibility that outdoor air pollution might play a role in causing asthma in susceptible individuals living very close to busy roads carrying a lot of truck traffic. Nonetheless, the effect on public health is unlikely to be large: air pollutants are likely to make only a small contribution, compared with other factors, in the development of asthma, and in only a small proportion of the population.
This paper focuses on the use of results of epidemiological studies to quantify the effects on health, particularly on mortality, of long-term exposure to air pollutants. It introduces health impact assessment methods, used to predict the benefits that can be expected from implementation of interventions to reduce emissions of pollutants. It also explains the estimation of annual mortality burdens attributable to current levels of pollution. Burden estimates are intended to meet the need to communicate the size of the effect of air pollution on public health to policy makers and others. The implications, for the interpretation of the estimates, of the assumptions and approximations underlying the methods are discussed. The paper starts with quantification based on results obtained from studies of the association of mortality risk with long-term average concentrations of particulate air pollution. It then tackles the additional methodological considerations that need to be addressed when also considering the mortality effects of other pollutants such as nitrogen dioxide (NO
2
). Finally, approaches that could be used to integrate morbidity and mortality endpoints in the same assessment are touched upon.
This article is part of a discussion meeting issue ‘Air quality, past present and future’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.