In patients with inadequately controlled severe persistent asthma, despite high-dose ICS and LABA therapy, and often additional therapy, omalizumab significantly reduced the rate of clinically significant asthma exacerbations, severe exacerbations and emergency visits. Omalizumab is effective and should be considered as add-on therapy for patients with inadequately controlled severe persistent asthma who have a significant unmet need despite best available therapy.
Background Over half the world is exposed daily to the smoke from combustion of solid fuels. Chronic obstructive pulmonary disease (COPD) is one of the main contributors to the global burden of disease and can be caused by biomass smoke exposure. However, studies of biomass exposure and COPD show a wide range of effect sizes. The aim of this systematic review was to quantify the impact of biomass smoke on the development of COPD and define reasons for differences in the reported effect sizes. Methods A systematic review was conducted of studies with sufficient statistical power to calculate the health risk of COPD from the use of solid fuel, which followed standardised criteria for the diagnosis of COPD and which dealt with confounding factors. The results were pooled by fuel type and country to produce summary estimates using a random effects model. Publication bias was also estimated. Results There were positive associations between the use of solid fuels and COPD (OR¼2.80, 95% CI 1.85 to 4.0) and chronic bronchitis (OR¼2.32, 95% CI 1.92 to 2.80). Pooled estimates for different types of fuel show that exposure to wood smoke while performing domestic work presents a greater risk of development of COPD and chronic bronchitis than other fuels. Conclusion Despite heterogeneity across the selected studies, exposure to solid fuel smoke is consistently associated with COPD and chronic bronchitis. Efforts should be made to reduce exposure to solid fuel by using either cleaner fuel or relatively cleaner technology while performing domestic work.More than 3 billion people, around half the world's population, use solid fuel to meet their basic household energy demands, and a large proportion of this exposed population lives in less economically developed countries (LEDCs).1 In many areas of Africa, Central America, South-east Asia and South Asia >90% of rural homes use solid fuel as the primary cooking and/or heating fuel. Women in the rural areas of LEDCs undertake routine cooking and heating over long periods, often many hours per day, and tend to be exposed to much higher levels of indoor air pollutants than men living in the same household. 2Chronic obstructive pulmonary disease (COPD), regarded as a disease of developed countries, is now recognised as a common disease in LEDCs. COPD is the fourth leading cause of all deaths, leading to the deaths of w3 million people in 2004, of which 90% of all COPD deaths were from low and middle income countries. 3 The main contributory factors are cigarette smoke, occupational exposures and exposure to solid fuel smoke. Lower socioeconomic status increases the risk of developing COPD, although which component factors (eg, poor housing, poor nutrition, low income, no/poor education) are the most important in influencing COPD and to what extent is unclear. The use of solid fuel has been suggested as a key causal factor.4e6 Although the variation in findings across studies is wide, this could be a real effect due to differing causal influences or could be due to methodolog...
The APHEA 2 project investigated short-term health effects of particles in eight European cities. In each city associations between particles with an aerodynamic diameter of less than 10 microm (PM(10)) and black smoke and daily counts of emergency hospital admissions for asthma (0-14 and 15-64 yr), chronic obstructive pulmonary disease (COPD), and all-respiratory disease (65+ yr) controlling for environmental factors and temporal patterns were investigated. Summary PM(10) effect estimates (percentage change in mean number of daily admissions per 10 microg/m(3) increase) were asthma (0-14 yr) 1.2% (95% CI: 0.2, 2.3), asthma (15-64 yr) 1.1% (0.3, 1.8), and COPD plus asthma and all-respiratory (65+ yr) 1.0% (0.4, 1.5) and 0.9% (0.6, 1.3). The combined estimates for Black Smoke tended to be smaller and less precisely estimated than for PM(10). Variability in the sizes of the PM(10) effect estimates between cities was also investigated. In the 65+ groups PM(10) estimates were positively associated with annual mean concentrations of ozone in the cities. For asthma admissions (0-14 yr) a number of city-specific factors, including smoking prevalence, explained some of their variability. This study confirms that particle concentrations in European cities are positively associated with increased numbers of admissions for respiratory diseases and that some of the variation in PM(10) effect estimates between cities can be explained by city characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.