MyoD is a muscle-specific transcription factor involved in commitment of cells to myogenesis. MyoD mRNA levels differ between fast and slow muscles, suggesting that MyoD may regulate aspects of fibre type. Here we show that detectable MyoD protein becomes restricted during development to the nuclei of the fastest classes of fibres in fast muscles. myoDm1 mice, in which the myoD gene has been disrupted, show subtle shifts in fibre type of fast muscles toward a slower character, suggesting that MyoD is involved in the maintenance of the fast IIB/IIX fibre type. In contrast, slow muscle shifts to a faster phenotype in myoDm1. Moreover, MD6.0-lacZ transgenic mice with the myoD promoter driving lacZ, show highest beta-galactosidase activity in the fastest fibres of fast muscles, but also express low levels in slow fibres of slow, but not fast, muscles, suggesting distinct regulation of gene expression in slow fibres of fast and slow muscles.
We describe a structural domain common to proteins related to human calmodulin-regulated spectrin-associated protein1 (CAMSAP1). Analysis of the sequence of CAMSAP1 identified a domain near the C-terminus common to CAMSAP1 and two other mammalian proteins KIAA1078 and KIAA1543, which we term a CKK domain. This domain was also present in invertebrate CAMSAP1 homologues and was found in all available eumetazoan genomes (including cnidaria), but not in the placozoan Trichoplax adherens, nor in any nonmetazoan organism. Analysis of codon alignments by the sitewise likelihood ratio method gave evidence for strong purifying selection on all codons of mammalian CKK domains, potentially indicating conserved function. Interestingly, the Drosophila homologue of the CAMSAP family is encoded by the ssp4 gene, which is required for normal formation of mitotic spindles. To investigate function of the CKK domain, human CAMSAP1-enhanced green fluorescent protein (EGFP) and fragments including the CKK domain were expressed in HeLa cells. Both whole CAMSAP1 and the CKK domain showed localization coincident with microtubules. In vitro, both whole CAMSAP1-glutathione-s-transferase (GST) and CKK-GST bound to microtubules. Immunofluorescence using anti-CAMSAP1 antibodies on cerebellar granule neurons revealed a microtubule pattern. Overexpression of the CKK domain in PC12 cells blocked production of neurites, a process that requires microtubule function. We conclude that the CKK domain binds microtubules and represents a domain that evolved with the metazoa.
Optic nerve fibers run parallel from the retina as far as the optic tract in fish, then suddenly criss-cross into a new pattern matching the tectal map. This change coincides with a unique demarcation between two astroglial territories in the retinotectal pathway, located where the optic chiasm occurs in other vertebrates, which we defined using antibodies directed against intermediate filaments (IF). We found that astroglia in optic nerve territory express an Mr 56,000 IF polypeptide, band 3, which we identify as the fish equivalent of vimentin in mammals. These astrocytic cells lack glial fibrillary acidic protein (GFAP; cf. Dahl and Bignami, 1973). Conversely, glia in brain territory, that is, in the optic tract and elsewhere in the CNS, lack the fish vimentin, but express GFAP. By electron microscopy, we obtained evidence that new retinal axons extend swiftly through the growing optic nerve, where they are tightly shepherded into a narrow track by newly differentiating glial cells, positive for the fish vimentin. In the GFAP-positive glial territory of the optic tract, by contrast, growing axons are slowed down and probably branch. We suggest that this allows them to fasciculate accurately with older fibers and thereby propagate a tectotopic pattern established by pioneer axons in the embryo.
We define here a previously unrecognized structural element close to the heart muscle plasma membrane at the intercalated disc where the myofibrils lead into the adherens junction. At this location, the plasma membrane is extensively folded. Immunofluorescence and immunogold electron microscopy reveal a spectrin-rich domain at the apex of the folds. These domains occur at the axial level of what would be the final Z-disc of the terminal sarcomere in the myofibril, although there is no Z-disc-like structure there. However, a sharp transitional boundary lies between the myofibrillar I-band and intercalated disc thin filaments, identifiable by the presence of Z-disc proteins, ␣-actinin, and N-terminal titin. This allows for the usual elastic positioning of the A-band in the final sarcomere, whereas the transduction of the contractile force normally associated with the Z-disc is transferred to the adherens junctions at the plasma membrane. The axial conjunction of the transitional junction with the spectrin-rich domains suggests a mechanism for direct communication between intercalated disc and contractile apparatus. In particular, it provides a means for sarcomeres to be added to the ends of the cells during growth. This is of particular relevance to understanding myocyte elongation in dilated cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.