The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.
The outlined protocol describes streamlined methods for the efficient and cost-effective generation of Cas9-associated guide RNAs. Two alternative strategies for guide RNA (gRNA) cloning are outlined based on the usage of the Type IIS restriction enzyme BsmBI in combination with a set of compatible vectors. Outside of the access to Sanger sequencing services to validate the generated vectors, no special equipment or reagents are required aside from those that are standard to modern molecular biology laboratories. The outlined method is primarily intended for cloning one single gRNA or one paired gRNA-expressing vector at a time. This procedure does not scale well for the generation of libraries containing thousands of gRNAs. For those purposes, alternative sources of oligonucleotide synthesis such as oligo-chip synthesis are recommended. Finally, while this protocol focuses on a set of mammalian vectors, the general strategy is plastic and is applicable to any organism if the appropriate gRNA vector is available.
CRISPR/Cas9 has revolutionized the field of genome engineering. Yet, as the CRISPR toolbox has rapidly expanded, there remains a need for a comprehensive library of CRISPR/Cas9 reagents that allow users to perform complex cellular and genetic manipulations without requiring labor-intensive generation of reagents to meet each user’s unique experimental circumstances. Here we described the creation and validation of a pNAX CRISPR library consisting of 72 different Cas9 and gRNA expression plasmids to allow for efficient multiplex gene editing, activation, and repression in mammalian cells. The toolkit plasmids, which are piggyBac or lentiviral based, provide the means for reliable and rapid delivery of Cas9/gRNA through either transient transfection or stable integration. Using the toolkit, we demonstrate the ease with which users can perform single or multiplex gene editing and modulate the expression of both coding and non-coding genes. We also highlight the use of the comprehensive toolkit to perform combinatorial gene knockout to identify factors that regulate homologous recombination, along with investigating the regulatory role of a 68-kb intronic region associated with human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.