The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits.
Abstract-MicroRNAs are endogenous repressors of gene expression. We examined microRNAs in the renal medulla of Dahl salt-sensitive rats and consomic SS-13 BN rats. Salt-induced hypertension and renal injury in Dahl salt-sensitive rats, particularly medullary interstitial fibrosis, have been shown previously to be substantially attenuated in SS-13 BN rats. Of 377 microRNAs examined, 5 were found to be differentially expressed between Dahl salt-sensitive rats and consomic SS-13 BN rats receiving a high-salt diet. Real-time PCR analysis demonstrated that high-salt diets induced substantial upregulation of miR-29b in the renal medulla of SS-13 BN rats but not in SS rats. miR-29b was predicted to regulate 20 collagen genes, matrix metalloproteinase 2 (Mmp2), integrin 1 (Itgb1), and other genes related to the extracellular matrix. Expression of 9 collagen genes and Mmp2 was upregulated by a high-salt diet in the renal medulla of SS rats, but not in SS-13 BN rats, an expression pattern opposite to miR-29b. Knockdown of miR-29b in the kidneys of SS-13 BN rats resulted in upregulation of several collagen genes. miR-29b reduced expression levels of several collagen genes and Itgb1 in cultured rat renal medullary epithelial cells. Moreover, miR-29b suppressed the activity of luciferase when the reporter gene was linked to a 3Ј-untranslated segment of collagen genes Col1a1, Col3a1, Col4a1, Col5a1, Col5a2, Col5a3, Col7a1, Col8a1, Mmp2, or Itgb1 but not Col12a1. The result demonstrated broad effects of miR-29b on a large number of collagens and genes related to the extracellular matrix and suggested involvement of miR-29b in the protection from renal medullary injury in SS-13 BN rats. (Hypertension. 2010;55:974-982.)
It has been possible to create tools to predict single guide RNA (sgRNA) activity in the CRISPR/Cas9 system derived from S. pyogenes due to the large amount of data that has been generated in sgRNA library screens. However, with the discovery of additional CRISPR systems from different bacteria, which show potent activity in eukaryotic cells, the approach of generating large datasets for each of these systems to predict its activity is not tractable. Here, we present a new guide RNA tool that can predict sgRNA activity across multiple CRISPR systems. In addition to predicting activity for Cas9 from S. pyogenes and Streptococcus thermophilus CRISPR1, we experimentally demonstrate that our algorithm can predict activity for Cas9 from Staphylococcus aureus and S. thermophilus CRISPR3. We also have made available a new version of our software, sgRNA Scorer 2.0, which will allow users to identify sgRNA sites for any PAM sequence of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.