Electrochemical CO2 reduction is an attractive option for storing renewable electricity and for the sustainable production of valuable chemicals and fuels. In this roadmap, we review recent progress in fundamental understanding, catalyst development, and in engineering and scale-up. We discuss the outstanding challenges towards commercialization of electrochemical CO2 reduction technology: energy efficiencies, selectivities, low current densities, and stability. We highlight the opportunities in establishing rigorous standards for benchmarking performance, advances in in operando characterization, the discovery of new materials towards high value products, the investigation of phenomena across multiple-length scales and the application of data science towards doing so. We hope that this collective perspective sparks new research activities that ultimately bring us a step closer towards establishing a low- or zero-emission carbon cycle.
Electrochemistry has the potential to sustainably transform molecules with electrons supplied by renewable electricity. It is one of many solutions towards a more circular, sustainable and equitable society. To achieve this, collaboration between industry and research laboratories is a must. Atomistic understanding from fundamental experiments and modelling can be used to engineer optimized systems whereas limitations set by the scaled-up technology can direct the systems studied in the research laboratory. In this Primer, best practices to run clean laboratoryscale electrochemical systems and tips for the analysis of electrochemical data to improve accuracy and reproducibility are introduced. How characterization and modelling are indispensable in providing routes to garner further insights into atomistic and mechanistic details is discussed. Finally, important considerations regarding material and cell design for scaling up water electrolysis are highlighted and the role of hydrogen in our society's energy transition is discussed. The future of electrochemistry is bright and major breakthroughs will come with rigour and improvements in the collection, analysis, benchmarking and reporting of electrochemical water splitting data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.