We report a proof of concept constructing an experimental setup to explore the imaging capability of a single X-ray detector, simulating a pixelated X-ray detector, to measure EDXRF (Energy Dispersive X-ray Fluorescence) and EDXRD (Energy Dispersive X-ray Diffraction) image spectra simultaneously. Combining a conventional rotating anode Cu X-ray source and assembling a single X-ray detector (Si-PIN Amptek, 139 eV at 5.98 keV) on a computer controlled XY stage, a proxy of an imaging X-ray detector was constructed for the measurement of simultaneous EDXRD and EDXRF of the same spot of a sample. The main advantages of this setup are the virtual need for sample preparation and the simultaneous XRF-XRD measurements of the same spot, enabling a combined and consistent analysis of a sample. The time consumed in an analysis using this setup is largely due to the need for acquiring multiple (several hundred) single spectra, which can be compensated, by using a variable acquisition time, depending on the count rate, exploring the high dynamic range of the X-ray emission during data acquisition. A Python code was written for offline data filtering and analysis. Using a simple geometrical model, d-spacings were calculated, and the model predictions were superimposed to the ED (Energy Dispersive) surface plots with good agreement. The instrument proved to work according to expectations and helped set the main experimental parameters for a more compact and portable setup under development.
This work describes the new facility for applied nuclear physics at the University of Sao Paulo, mainly for irradiation of electronic devices. It is a setup composed of a quadrupole doublet for beam focusing/defocusing plus multiple scattering through gold foils to produce low intensity, large-area, and high-uniformity heavy-ion beams from 1H to 107Ag. Beam intensities can be easily adjusted from 102 particles cm2/s to hundreds of nA for an area as large as 2.0 cm2 and uniformity better than 90%. Its irradiation chamber has a high-precision motorized stage, and the system is controlled by a LabViewTM environment, allowing measurement automation. Design considerations and examples of use are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.